

NANOTECHNOLOGY: AN EMERGING AND PROMISING TECHNOLOGY FOR WASTEWATER TREATMENT

FAHIM HOSSAIN

WATER ARABIA, 2015 18TH FEBRUARY, 2015

Le Meridien, Khober, KS

Outline

- Why nanotechnology (NT)?
 - NT for wastewater in the context of Kingdom
 - Nano for different treatments
 - Applications:
 - --- Industrial dye degradation by TiO₂
 - --- Antimicrobial properties of nanoparticles (NPs)
 - Challenges in NT
 - Societal and health impact
 - Acknowledgement

Why nanotechnology (NT)?

High surface area Possible to tune the properties of the nanoparticles Can increase competitiveness among the wastewater treatment technologies Environmental performance can be improved by increasing efficiency and reducing pollutants Can take the lead in wastewater treatment technologies by deducing the knowledge gap

Costeffectiveness

ND for wastewater in the context of Kingdom

Nano for different treatments				
Applications	Nanoelements			
Adsorption	TiO_2 ; CNT; Fe ⁰ ;			
Antimicrobial activity	TiO ₂ ; MgO; ZnO; nAg; CNT; Chitosan; Fe ⁰ ; Al ₂ 0 ₃ ; Fullerene;			
Photocatalytic activity	TiO ₂ ; ZnO; CNT; Fullerene;			
Wastewater filtration	TiO ₂ ; CNT; Fe ⁰ ; nAg; Graphene;			
Nutrient removal	TiO_2 ; Fe^0 ;			
Degradation of organic	TiO ₂ ; Fe ⁰ ; CNT;			
Monitoring and sensing	CNT; Quantum dots; nAu;			
Treatment plant operations	TiO ₂ ; ZnO; CNT;			

Applications:

0

Industrial dye degradation by TiO₂ Antimicrobial properties of nanoparticles (NPs)

Why TiO₂ for industrial dye degradation?

Low cost	Non- toxic	Particle stability	Anti- microbial properties	Environmental friendliness	Heavy metal adsorption	Generate ROS to inactivate virus & bacteria
-------------	---------------	-----------------------	----------------------------------	--------------------------------------	------------------------------	---

TiO₂ synthesis for Photocatalytic activity

\sim XRD pattern for synthesized TiO₂ Anatase (2 Θ at 25.5; 38.5; 48.2; 54.4; 62.4)

FT-IR Spectra for synthesized TiO₂ (N-H bonding around 1500/cm)

Industrial dye degrada	tion by TiO_2
EDA concentration (% v/v)	MB photo-degradation efficiency
Bare TiO ₂ particles	58.14%
3.0% EDA-TiO ₂	92.88%
5.0% EDA-TiO ₂	83.68%
7.0%EDA-TiO ₂	92.70%

 \bigcirc

0

Antimicrobial activity by nanoparticles (NPs)

2011)

Antimicrobial activity by NPs

Table 1

The efficiency of TiO₂ NPs as antimicrobial agent.

Elements	Properties	Irradiation process	Matrix	Inactivation efficiency	Ref.
TiO ₂ powder (Degussa P-25)	Surface area 60 m²/g	Solar light (1660 µE s ⁻¹ m ⁻²) & dark	Drinking water	E. coli (99.97% in light after 60 min; 99.96% in dark after 60 min) Initial TiO ₂ conc. 1.0 g/l & initial E. coli conc. 10 ⁶ CFU/ml	Wei et al. (1994)
TiO ₂ -Fe ₂ O ₃ composite	Particle size 10 nm; Surface area 168 m ² /g;	UV (11 W; Wavelength 253.7 nm)	Drinking water (pH-7.0)	E. coli (99.9% after 1 min.) Initial TiO ₂ conc. 0.2 g/l & initial E. coli was 10 ⁷ CFU/100 ml	Sun et al. (2003)
TiO ₂ powder (Degussa P-25)	Surface area 60 m ² /g	UV (18 W; Wavelength 300–420 nm; 7.9 \times 10 ⁻⁶ einsteins/l/s)	Drinking water (pH-7.1)	MS2 Phage, a virus species (88.78% after 120-min) & E. coli (99.43% after 120-min.) Initial TiO ₂ conc. 1.0 g/l & initial <i>E. coli</i> conc. 6.4×10^5 CFU/ml; MS2 same.	Cho et al. (2005)
TiO ₂ film	Particle size 8–10 nm; Surface area 147 m ² /g	UV (2 × 15 W; Wavelength 365 nm; 3.48 mW/cm ²) & Dark	Wastewater	MC-LR (100% after 150-minute; 24% after 180-minute); <i>E. coli</i> (100% after 120-minute) Initial TiO ₂ conc. 62.2 µg/cm ² of film & initial <i>E. coli</i> conc. 10 ⁶ -10 ⁷ CFU/ml)	Choi et al. (2006)
TiO ₂ & N-doped TiO ₂ (Doped by Ethylenediame & Ethanolamine)	Particle size 10 nm; Surface area 80–120 m ² /g;	Solar light (10 W/m ²)	Synthetic wastewater (pH-7.2)	<i>E. coli</i> (99.99% by TiO ₂ after 120-min.; 100% by TiO ₂ -N-Ethylenediame after 120-min.; 99.9999% by TiO ₂ -N-Ethanolamine after 120-min.) Initial TiO ₂ conc. 0.1 g/l & initial <i>E. coli</i> conc. 8.9 × 10 ⁸ CFU/ml	Liu et al. (2007)

Antimicrobial activity by NPs

Table 2Antimicrobial efficiency of nAg, CNT and ZVINP.

Elements	Properties	Matrix	Inactivation efficiency	Ref.
Ag-Zeolite		Water	<i>E. coli</i> (99.7% after 30 min); Ag-Zeolite conc. 100 mg/ml and <i>E. coli</i> conc. 2.2 \times 10 ⁷ CFU/ml	Matsumura et al. (2003)
n-Ag	Particle size 12 nm; Surface area 158 m ² /g	Water	E. coli (99.0% after 30 min); n-Ag conc. 50 μg/ml and E. coli conc. 10 ⁸ CFU/ml	Sondi and Sondi (2004)
n-Ag		Water	E. coli (99.93% after 24 h); B. subtilis (99.99% after 24 h); n-Ag conc. 100 µg/ml	Yoon et al. (2007)
SWNT	5 µm	Water	S. typhimurium (99.997% after 1 h); SWNT conc. 100 µg/ml and S. typhimurium cell 10 ⁸ CFU/ml	Yang et al. (2010)
SWNT		Water	<i>E. coli</i> K12 (73.1 \pm 5.4%, 79.9 \pm 9.8% and 87.6 \pm 4.7% inactivation after 30, 60 and 120 min of incubation time, respectively)	Kang et al. (2007)
SWNT and MWNT		Water	<i>E.</i> coli K12 (79.9% and 25% after 1 h by SWNT and MWNT respectively); NT conc. 5 μ g/ml and <i>E. coli</i> conc. 5 \times 10 ⁷ CFU/ml	Kang et al. (2008)
SWNT and MWNT	SWNT (Diameter 1.2 nm; Length 17.8 µm); MWNT (Diameter 17.4 nm; Length 77 µm)	Water	E. coli (87% after 1 h); P. aeruginosa (80% after 1 h); S. epidermidis (66% after 1 h); B. subtilis (16% after 1 h); NT conc. 0.1 μ g/ml and Bacteria conc. 2 × 10 ⁶ CFU/ml	Kang et al. (2009)

Challenges in NT

- Particle agglomeration
 - Reducing particle surface area
 - Bulk commercial production
 - Practical applications
 - Utilization of exceptional physical, chemical and mechanical properties
 - NPs may have less toxicity than micro or bulk size particles

Societal and health impact

- Nanotoxicity: About 400 reported toxicity and ecotoxicity
 - Public awareness
 - Nanocontamination
 - Can effect human cells
 - Recovering of nanoparticles or nanomaterials from the environment

Acknowledgement

 \bigcirc

٢

Question!!

0

 \bigcirc