

Hybrid Sand Filtration

February 18, 2015

Sand Filtration Basics

- As old as water treatment itself dating back to 2,000 – 4,000 BC
- Big stuff stays in, small stuff passes through
- Porous media Depth Filtration
- Solids Build Up in Sand Bed then Need to be Removed/Cleaned

Granular Media Filtration

Hybrid Filtration Basics

<u>Traditional</u> filters backwash based upon <u>solids</u>, which can be better for performance, but require redundant filters and ancilliary equipment.

<u>Continuous</u> filters backwash based on <u>hydraulics</u>, which may sacrifice some performance, but doesn't require additional redundancy or ancillary equipment.

<u>EcoWash</u> is <u>Hybrid</u> of these two. EcoWash uses a <u>continuous</u> filter, but operates it based on <u>solids</u> like a traditional filter, giving the best of both worlds.

EcoWash[™] A Hybrid Filter

Continuous Filtration

First upflow continuous backwash in America - 1978

A "Continuous" filter is an <u>upflow</u>, <u>deep bed</u>, <u>granular media</u> <u>filter</u> with <u>continuous backwash</u>

- Up Flow Dirty water is introduced at the bottom of the sand bed
- Deep Bed Process is defined as depth filtration as opposed to surface filtration
- Granular Media Sand (0.9mm or 1.4mm depending on application)
- Filter Big stuff stays in, small stuff goes out
- Continuous Backwash Sand is cleaned during regular operation, i.e. no downtime

Process Animation

Hybrid Filtration Operation

- EcoWash utilizes a continuous filter but backwashes intermittently when needed as <u>dictated by solids buildup in the filter</u>.
- Backwashing Triggers At all times, there are two set points. Whichever is reached first triggers a backwash
 - Headloss When solids build up and head loss increases, a backwash is triggered
 - Time A timer will limit the amount of time between backwashes regardless of solids
- Control Strategies
 - If the headloss trigger is set more aggressively than the timer, backwashes will be predominantly started based on solids in the filter.
 - If the timer set point is set more aggressively than the headloss set point, backwashes will be predominantly started based on time.
- Sequence of Operation During Backwash
 - Reject Valve is Opened
 - Upper Air Burst
 - Lower Air Burst
 - Normal Air flow

Hybrid Filtration Development

Obstacles to Development

Monitoring

- The Single Largest Obstacle to Overcome Monitoring of Proper Operation
 - Continuous filters lift sand indirectly
 - Stopping and starting of sand must be monitored
- Monitoring Requirements:
 - Real time and continuous
 - Cost effective
 - Ensure sand washing has initiated
 - Ensure proper sand washing throughout cycle
 - Ensure reject valve closure during off cycles
- EcoWash Monitors the hydraulics within the filter via level sensors to ensure proper operation in <u>real time</u> and <u>at all times</u>
 - Ultrasonic level sensors are cheap and effective
 - Any changes to the filter operation effects filter hydraulic as specific points
 - Utilizing level sensors to monitor proper operation is process and cost effective – The secret of EcoWash

Hybrid Filtration Development

Obstacles to Development (continued)

Turbidity Spikes

- When sand cleaning is initiated, the air introduction into the airlift can cause release of solids from the bed
- EcoWash utilizes a dual air burst to act as a "soft start"
- By initiating the first air introduction higher in the airlift, the energy is dissipated within the airlift without effecting the sand bed

Turbidity and TSS Results – Pompano WRF Test

Turbidity and TSS Results – Pompano WRF Test

July 2010 Turbidity

ENR – Case Study

Laurel, DE – Full Scale DynaSand[®] EcoWash[™] ENR installation

Plant data:

- Design 0.7 MGD ADF
- Current 0.35 MGD ADF
- 2 cells x 3 filters/cell
- CBF* Installed in Jul/2007
- Filters denitrifying since 2009
- Biolac W-Ox upstream
- EcoWash[™] operating Feb 2011

*CBF: Continuous Backwash Filter

Laurel, DE – ENR Application

Laurel, DE WWTP - DynaSand® ENR Filtration System Methanol Consumption

Laurel, DE – ENR Application

Laurel, DE – ENR Application

Compressor Running Hours at Laurel, DE Full Scale DynaSand[®] EcoWash[™] ENR Test

Laurel, DE – ENR Application

Reject Flow Reduction at Laurel, DE Full Scale DynaSand[®] EcoWash™ ENR Test

Omar Gadalla, PE ogadalla@parkson.com 954-917-1880 Parkson Corporation 1401 West Cypress Creek Road Suite 100 Fort Lauderdale, FL 33309

D2[™] Configuration

