

www.cartwright-consulting.com pscartwright@msn.com

United States Office

8324 16th Avenue South Minneapolis, MN 55425-1742 Phone: (952) 854-4911 Fax: (952) 854-6964 European Office President Kennedylaan 94 2343 GT Oegstgeest The Netherlands

Phone: 31-71-5154417

Fax: 31-71-5156636

THE ROLE OF MEMBRANE TECHNOLOGIES IN WATER REUSE APPLICATIONS

by

Peter S. Cartwright, PE

Membranes in Drinking & Industrial Water Production

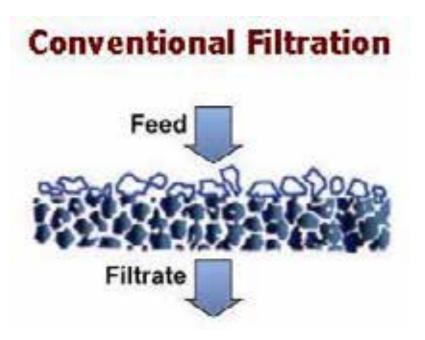
Leeuwarden, The Netherlands

September 12, 2012

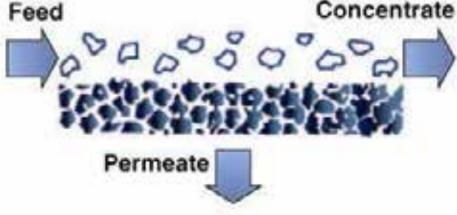
Introduction Water Reuse **Membrane Technologies Device Configurations** System Design Testing Conclusions

Water Reuse Growth in the U.S.

Overall: 11% per year Industrial: 14% per year

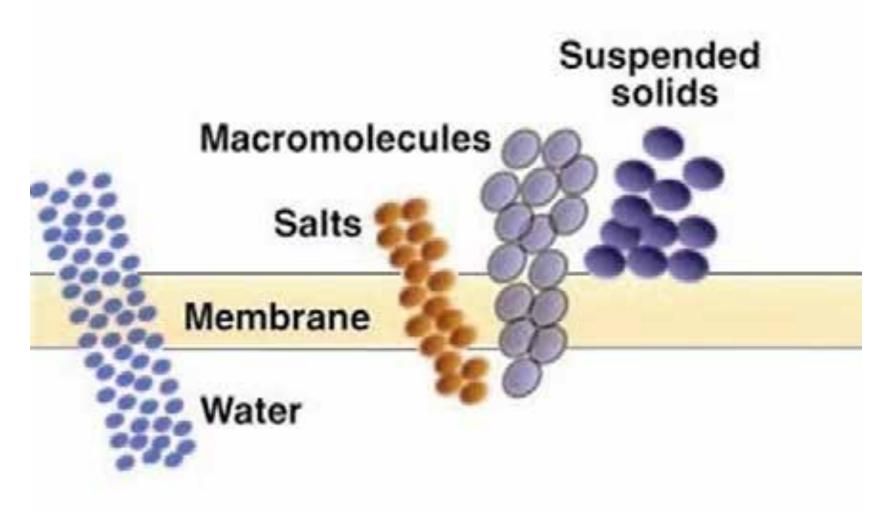


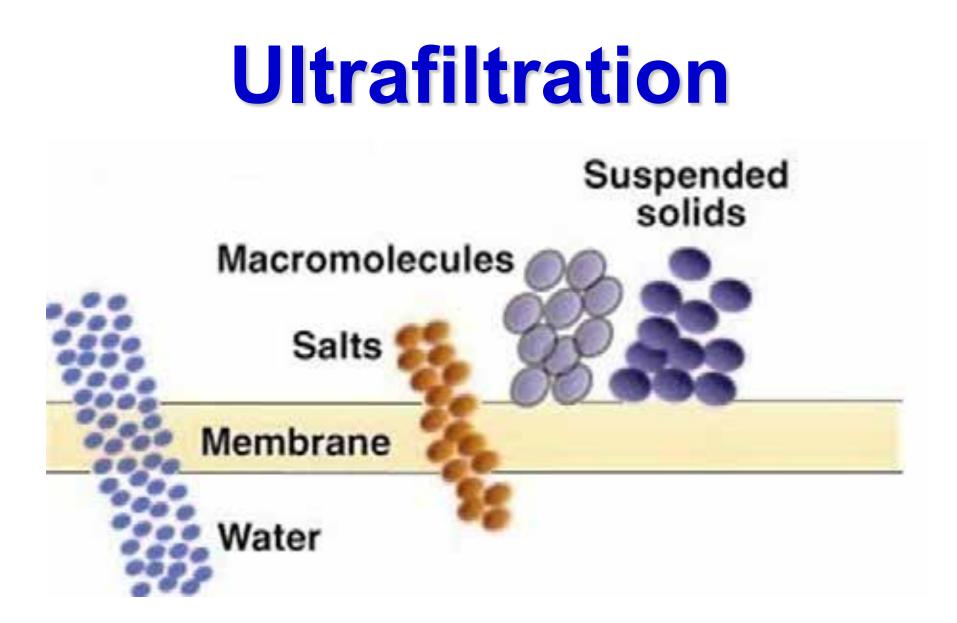
Membrane Technologies


- Microfiltration (MF)
- Ultrafiltration (UF)
- Nanofiltration (NF)
- Reverse Osmosis (RO)

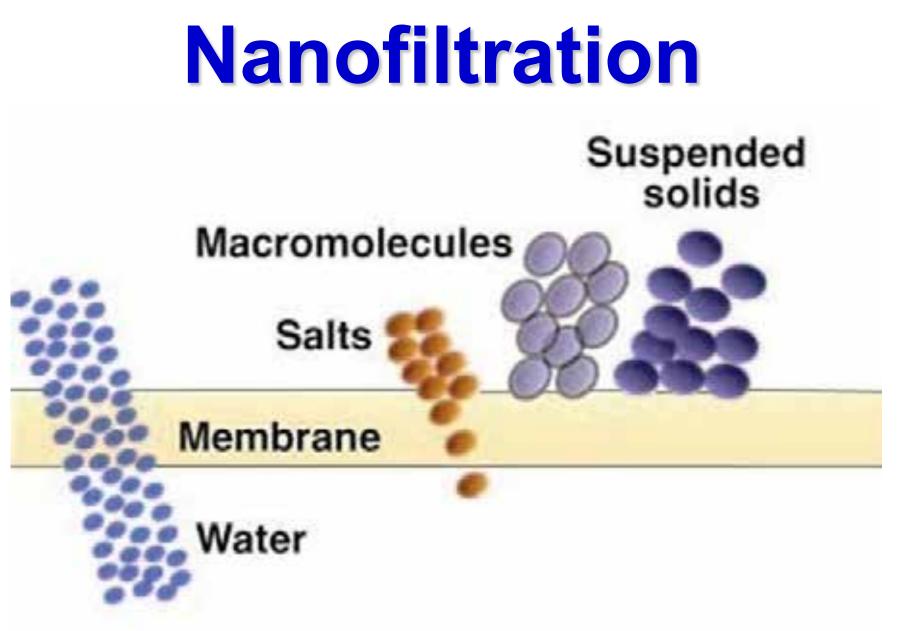


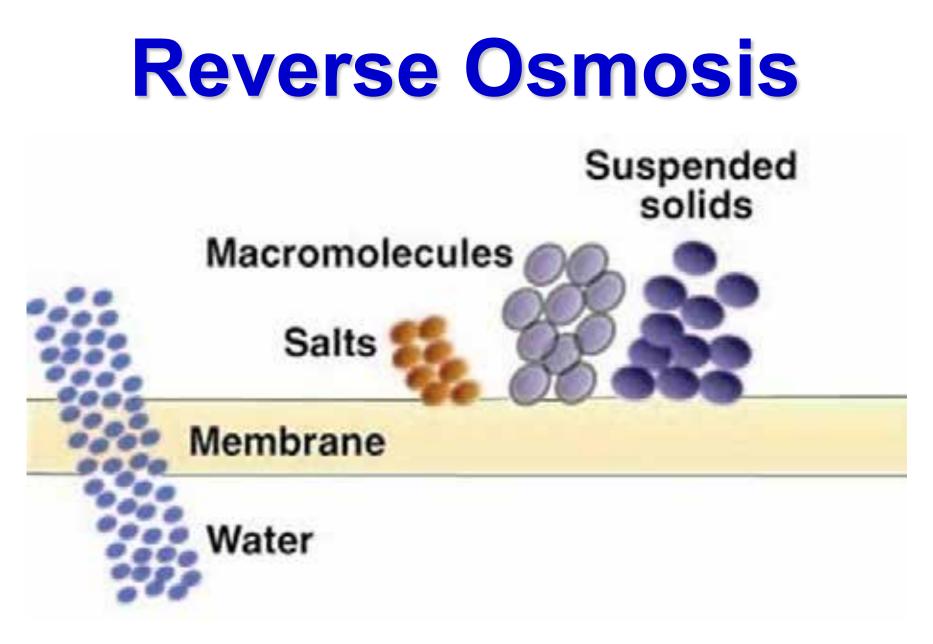
Conventional vs. Crossflow Filtration

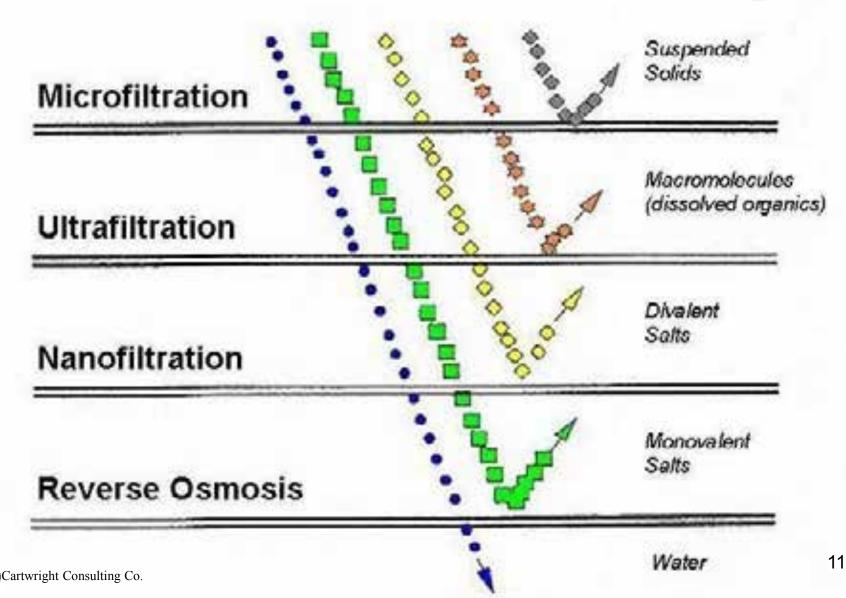




Membrane Technologies Advantages

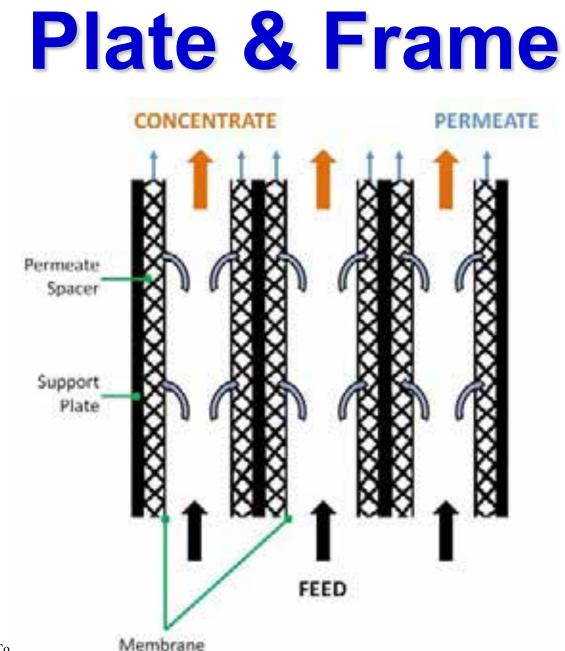

- ✓ Continuous and automatic operation.
- Capable of removing contaminants down into the submicron size range.
- ✓ Usually requires no chemical addition.
- ✓ Backwashing capabilities.
- ✓ Generally can operate in turbulent flow conditions.
- ✓ Systems have a very small footprint.


Microfiltration



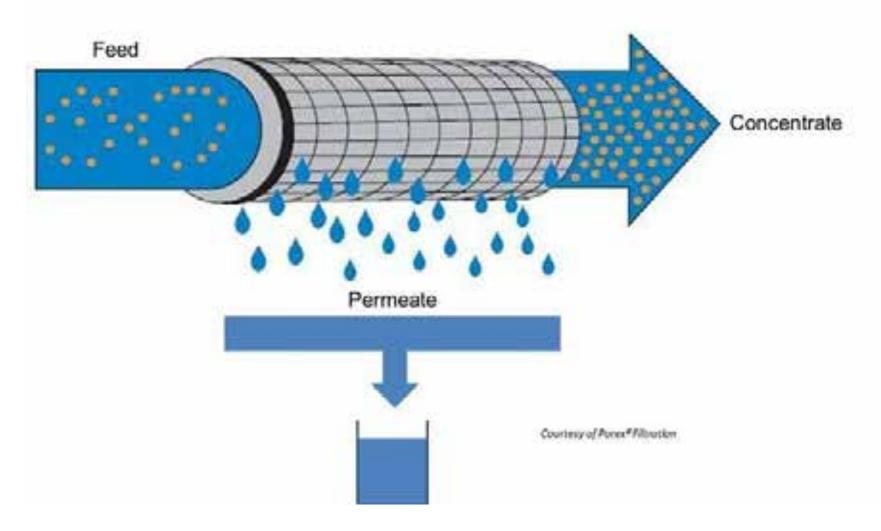
Membrane Technologies

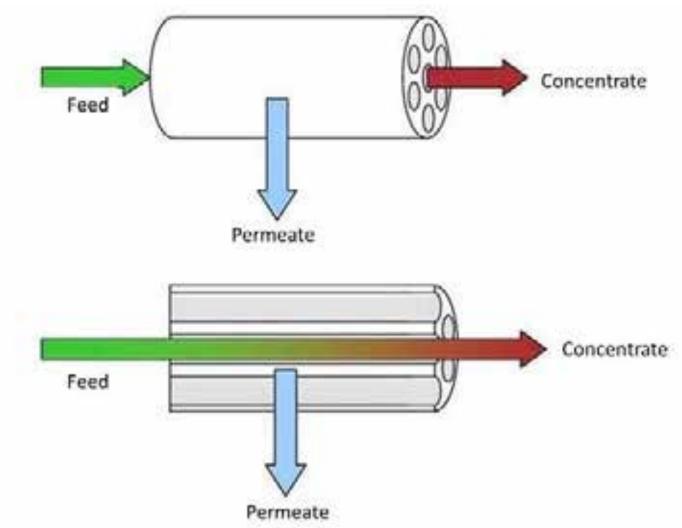
Membrane Technologies Compared


Feature	Microfiltration	Ultrafiltration	Nanofiltration	Reverse Osmosis	
Materials of Construction	Ceramics, Sintered metals, Polypropylene, Polysulfone, Polyethersulfone, Polyvinylidene fluoride, Polytetrafluoroethyliene	Ceramics, Sintered metals, Polypropylene, Polysulfone, Polyethersulfone, Polyvinylidene fluoride	Thin film composites, Cellulosics	Thin film composites, Cellulosics	
Pore Size Range (micrometers)	0.1 - 1.0	0.001 - 0.1	0.0001 - 0.001	<0.0001	
Molecular Weight Cutoff Range (Daltons)	>100,000	1,000 - 100,000	300 - 1,000	50 - 300	
Operating Pressure Range	<30 20 - 100		50 - 300	225 - 1,000	
Suspended Solids Removal	Yes	Yes	Yes	Yes	
Dissolved Organics Removal	None	Yes	Yes	Yes	
Dissolved Inorganics Removal	None	None	20-95%	95-99+%	
Microorganism Removal	Protozoan cysts, algae, bacteria*	Protozoan cysts, algae, bacteria*, viruses	All*	All*	
Osmotic Pressure Effects	None	Slight	Moderate	High	
Concentration Capabilities	High	High	Moderate	Moderate	
Permeate Purity (overall)	Low	Moderate	Moderate-high	High	
Energy Usage	Low	Low	Low-moderate	Moderate	
Membrane Stability	High	High	Moderate	Moderate	

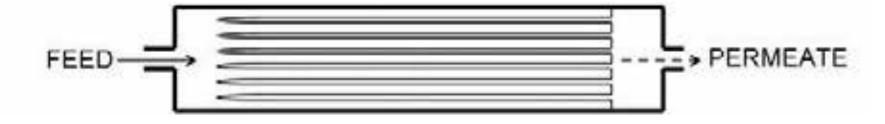
* Under certain conditions, bacteria may grow through the membrane.

Device Configurations

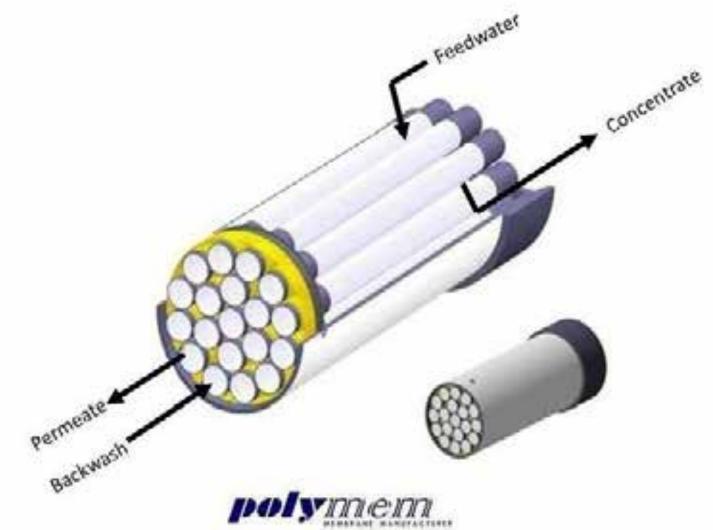

- Plate & Frame
- Tubular
- Hollow (Capillary) Fiber
- Spiral Wound



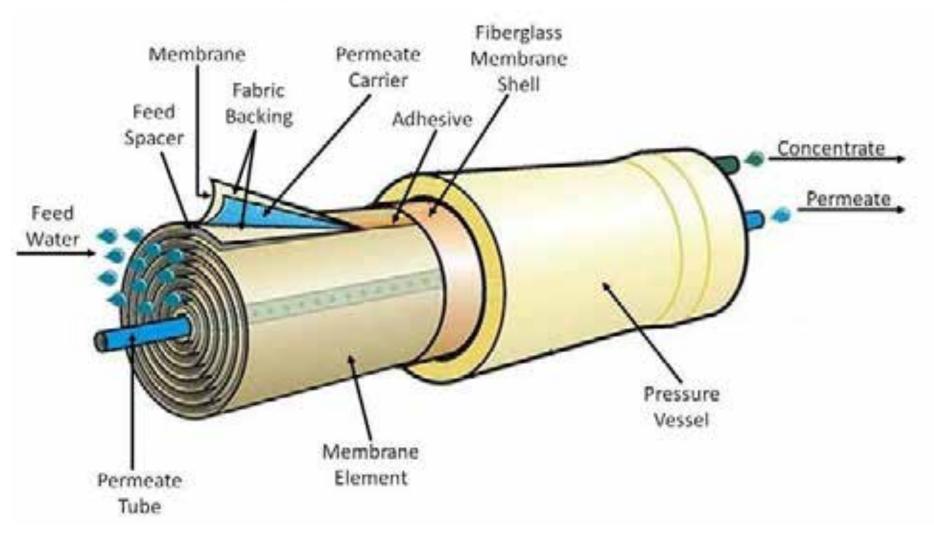
Tubular




Tubular



Hollow (Capillary) Fiber



Hollow (Capillary) Fiber

Spiral Wound

Membrane Element Configuration Comparison

MEMBRANE ELEMENT CONFIGURATION COMPARISON

Element Configuration	Packing Density *	Fouling Resistance **		
Plate & Frame	Low	High		
Tubular	Low	Very High		
Hollow (Capillary) Fiber	High	Medium		
Spiral Wound	Medium	Low		

* Membrane area per unit volume

** Tolerance to suspended solids

Microfiltration (MF) & Ultrafiltration (UF)

Materials of	Device Configuration						
Construction	Hollow Fiber	Tubular	Plate & Frame	Spiral Wound			
Polymeric							
PS	Х	Х	X	Х			
PES	Х	Х	Х	Х			
PAN	Х	Х	X	Х			
PE	—	Х	—	—			
PP	Х	Х	X	—			
PVC	—	Х	-	—			
PVDF	Х	Х	—	—			
PTFE	Х	—	X	—			
PVP	Х	Х	-	—			
CA	Х	—	-	—			
Non-Polymeric							
Coated 316LSS	—	Х	-	None			
<i>a</i> -Alumina	_	Х	X	None			
Titanium Dioxide	_	Х	_	None			
Silicon Dioxide	_	Х		None			

PS = PolysulfonePVDF = Polyvinylidene FluoridePES = PolyethersulfonePTFE = PolytetrafluoroethylenePE = PolyethyleneCA = Cellulose AcetatePP = PolypropylenePVP = PolyvinylpyrrolidonePAN = PolyacrylonitrileTF = Thin Film Composite

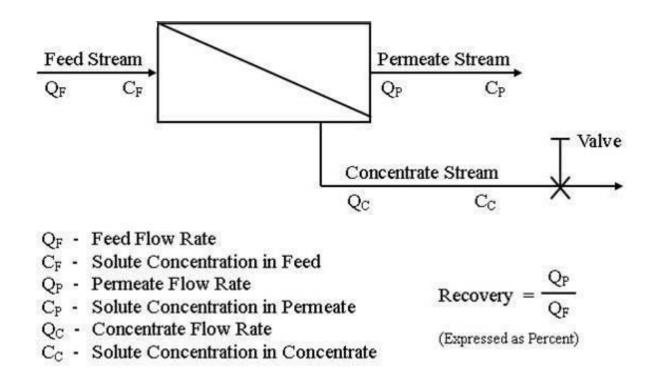
Nanofiltration (NF) & Reverse Osmosis (RO)

Materials of	Device Configuration						
Construction	Hollow Fiber	Tubular	Plate & Frame	Spiral Wound			
Polymeric							
PS*	—	Х	X	Х			
PES*	—	Х	X	Х			
CA	—	Х	X	Х			
TF	_	Х	X	Х			
Non-Polymeric							
None							

* Base polymer below TF polymer

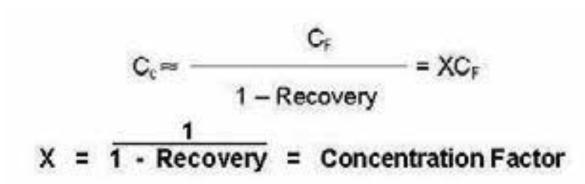
PS = *Polysulfone*

PES = *Polyethersulfone*

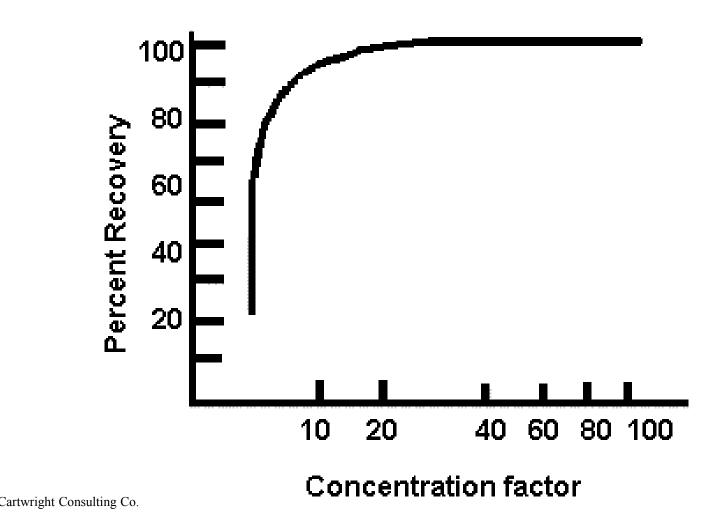

CA = *Cellulose Acetate*

TF = *Thin Film Composite*

Membrane Element Cleaning Capability


Element Configuration			brane nology	Backwashable?		
	MF	UF	NF	RO		
Plate & Frame	Yes	Yes	Yes	Yes	No (except for inorganic membrane)	
Tubular	Yes	Yes	Yes	Yes	Yes	
Hollow Fiber	Yes	Yes	Yes	No	Yes	
Spiral Wound	Yes	Yes	Yes	Yes	No (NF, RO) Yes (MF, UF)	

Membrane System Schematic


- TDS = Total Dissolved Solids: Usually considered the total of the ionic contaminants (salts) in solution.
 - mg/L (milligrams per liter) is the same as ppm (parts per million)

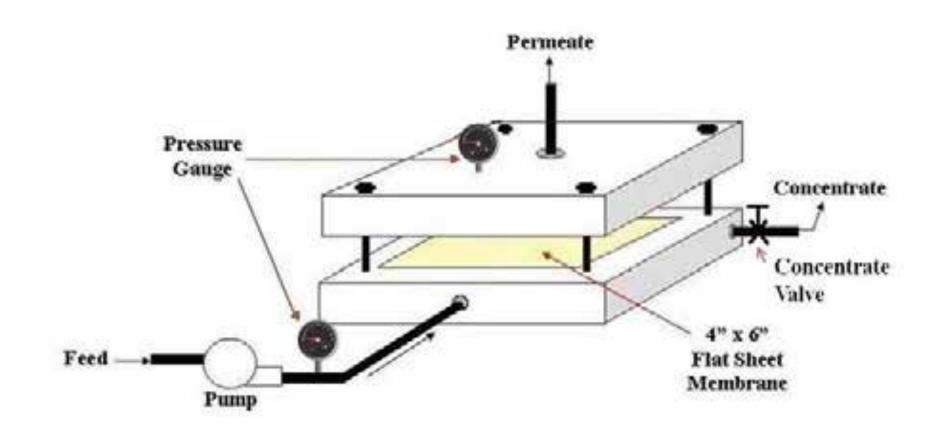
Effect of Recovery on Concentration

Percent Recovery	Concentration Factor				
33%	1.5				
50%	2				
67%	3				
75%	4				
80%	5				
90%	10				
95%	20				
97.5%	40				
98%	50				
99%	100				

Effect of Recovery on Concentration Factor

Design Factor Considerations

- Optimum membrane element configuration
- Total membrane area
- Specific membrane polymer
- Optimum pressure
- Maximum system recovery
- Flow conditions
- Membrane element array
- Pretreatment requirements

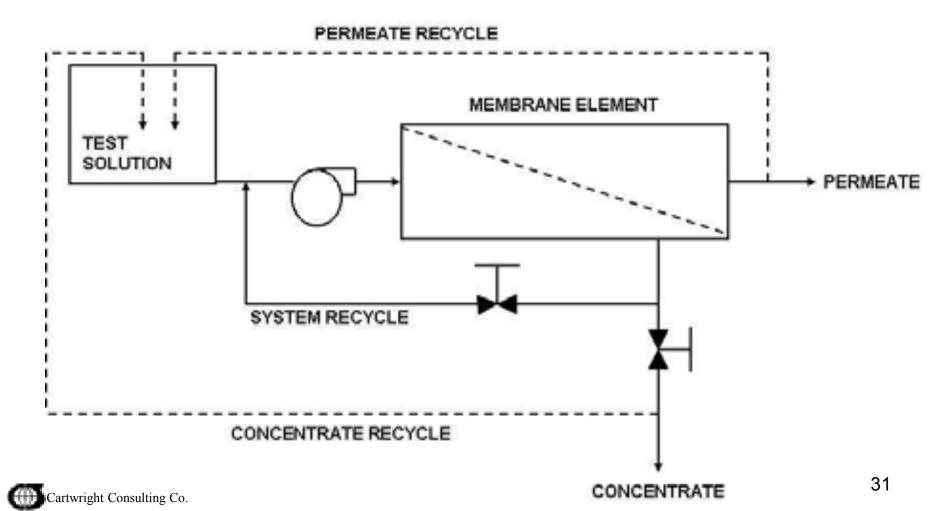


TESTING

Cartwright Consulting Co.

Cell Test Unit

<u>Advantages</u>


- Only small areas of membranes are needed; excellent for screening various membranes
- Unit is simple to operate
- Can be run on small volumes of test stream
- Takes very little time

<u>Disadvantages</u>

- Cannot obtain engineering design data
- Cannot be used for long-term fouling studies
- Is only useful with membranes available as flat sheet

Applications Test Schematic

Applications Testing

- Run control (tap water or water treated with RO or DI)
 Take data (see Membrane Application Test Data Sheet)
- Run feedwater starting at low recovery, and after stabilization (usually less than 5 minutes) take data (see Membrane Application Test Data Sheet)

The system recovery is then increased incrementally while adjusting the recycle valve to ensure that the correct crossflow velocity is maintained.

Applications Testing

<u>Advantages</u>

- ▲ Fast
- Provides scale-up data
 (Flux rate, osmotic pressure as a function of recovery, pressure requirements, etc.)
- Can provide an indication of membrane stability

<u>Disadvantages</u>

- A Does not reveal long term chemical effects
- A Does not provide data on long term fouling effects

Advantages

Accomplishes all of the functions of the applications test plus provides long term membrane fouling and stability data.

<u>Disadvantages</u>

Expensive in terms of monitoring and time requirements.

MEMBRANE APPLICATION TEST DATA

Date:

Client: _____

Membrane Element:

		F	PRESSUR	E	FLOW			TEMP	TEMP CONDUCTIVITY		
	% Recovery	Prefilter ∆P	Primary	Final	Recycle	Permeate	Concentrate				Concentrate
Start											
End											
										-	
										6	

Comments: _____

WATER – CRITICAL TO LIFE

Conservation, **Collection & Conversion** are practical, economical and essential

Water Recovery & Reuse is an achievable goal

Contact Information

Peter S. Cartwright, PE pscartwright@msn.com

www.cartwright-consulting.com

1/952-854-4911