

ODOR CONTROL

1

13135 Danielson Street, Suite 204 Poway, CA 92064

Why Odor Control?

- 20 years ago there was little talk of odor control. WWTP's and PS were located out of town, and odor was not a problem.
- Today odor control is generally considered an essential process in sewage treatment plant design, and in many other industries.

Why? Because:

- 1) Odor is a nuisance (complaints)
- 2) In some cases odors may be a health hazard (risk to employees)
- 3) Odorous compounds can cause corrosion (damage to equipment)

Nuisance vs. Hazardous Odors

Compound	Typical	Nuisance odor,	Health Hazard,	Explosion
	Concentration	ppm	ppm	hazard, ppm
	Range*, ppm			
Hydrogen	0.05 to 500	0.001	20/100	40,000
Sulphide				
Ammonia	0 to 200	17	50/300	15,000
Methyl	0.001 to 1	0.001	10/150	39,000
Mercaptan				
Carbon	0.01 to 10	0.03	20/500	13,000
Disulphide				

Hydrogen Sulfide Concerns

$\rm H_2S$ is primary odour, typically 10 to 100 times more concentrated than other odors

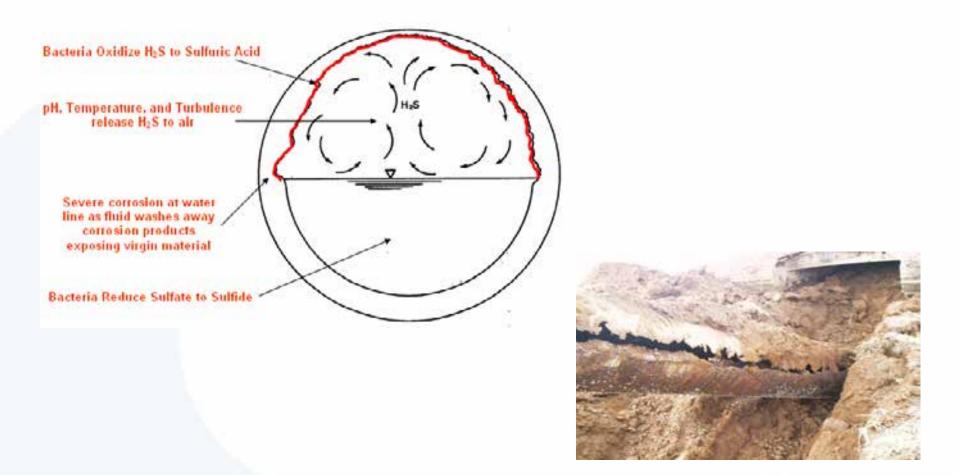
- Rotten Egg Odor,
- Low Odor Threshold (~1 ppb)
- Typical concentrations from 10 to 500 ppm or more

Safety - Exposure Effects:

- Nuisance Odor (below 10 ppm)
- Headache and Nausea (10 50 ppm)
- *Eye/Lung Damage (50 500 ppm)*
- Collapse and Death (500+ ppm)

Corrosion:

• Forms Sulfuric Acid in Condensate



Hydrogen Sulfide Odor and Toxicity

	← 0.1
Odor Threshold	← 3
Offensive Odor	C
Headache, Nausea	← 10
Throat and Eye Irritation	← 50
Eye Injury	
Conjunctivitis, Respiratory Tract	← 100
Irritation, Olfactory Paralysis	៹ 300
Pulmonary Edema	< 500 ← 500
Strong Nervous System Stimulation	500
Apnea	← 1 000
Death	← 1,000
	← 2,000 ppm
	Offensive Odor Headache, Nausea Throat and Eye Irritation Eye Injury Conjunctivitis, Respiratory Tract Irritation, Olfactory Paralysis Pulmonary Edema Strong Nervous System Stimulation Apnea

Hydrogen Sulfide and Corrosion

Conditions Promoting Sulphide Generation

Level of B.O.D.

• High levels increase sulphide production and generate anaerobic conditions sooner

Sulphate Concentration

Bacteria reduce sulphate to sulphide under anaerobic conditions

Temperature

Higher temperatures promote biological activity

Stream Velocity

• Higher linear velocities lead to reduced thickness of slime layer

Surface Area

• Large surface areas support larger bacterial populations

Detention Time

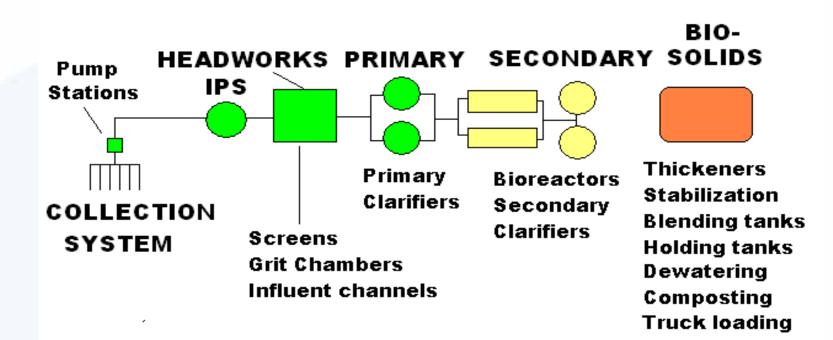
• Long detention times allow for longer anaerobic zones

Conditions Promoting Hydrogen Sulphide Release

Temperature

• Solubility of H₂S is temperature dependent per Henry's Law.

рΗ


- Three species of Sulfides exist: H₂S, HS⁻, S⁼.
- Only H₂S is volatile.
- The proportion of H₂S to HS⁻ is pH dependent
- Low pH favors H₂S

Turbulence

• *High velocities induce turbulence, which in turn increase the liquid/vapor mass transfer area.*

Municipal Odor Control Applications

Types of Odors

Hydrogen Sulfide (H₂S)

- Typically 100x higher concentration than other odorous compounds
- Masks other odors, which then become noticeable after H₂S is removed
- Relatively easy to remove from air

Organic Sulfur Compounds (DMS, DMDS, Mercaptans, COS, CS₂)

Nitrogen Compounds: Ammonia and amines

Other Volatile Organic Compounds (VOCs)

- Aldehydes
- Ketones

Fatty Acids

Odorous Compounds found in Sewage Treatment Process

Sulphur Compounds	Formula	Odour description	Odour Threshold ppb	Typical Ranges ppb
Hydrogen Sulphide	H ₂ S	Rotten eggs	0.5	50-500000
Dimethyl Sulphide	CH ₃ -S-CH ₃	Decayed vegetables	0.1-2	10-1000
Dimethyl Disulphide	CH ₃ -S-S-CH ₃	Decayed vegetables	0.1-2	1-100
Methyl Mercaptan	CH ₃ -SH	Decayed cabbage	0.7	10-1000
Ethyl mercaptan	CH ₃ -CH ₂ -SH	Decayed cabbage	0.2	1-100
Carbon disulphide	CS ₂	Sweet, ether-like	25-160	1-100
Carbonyl sulphide	COS		100	1-100

* There are no "typical sewage odours" for design purposes. Compounds and concentrations vary widely from source to source, site to site, hour to hour, and day to day.

Odorous Compounds found in Sewage Treatment Process

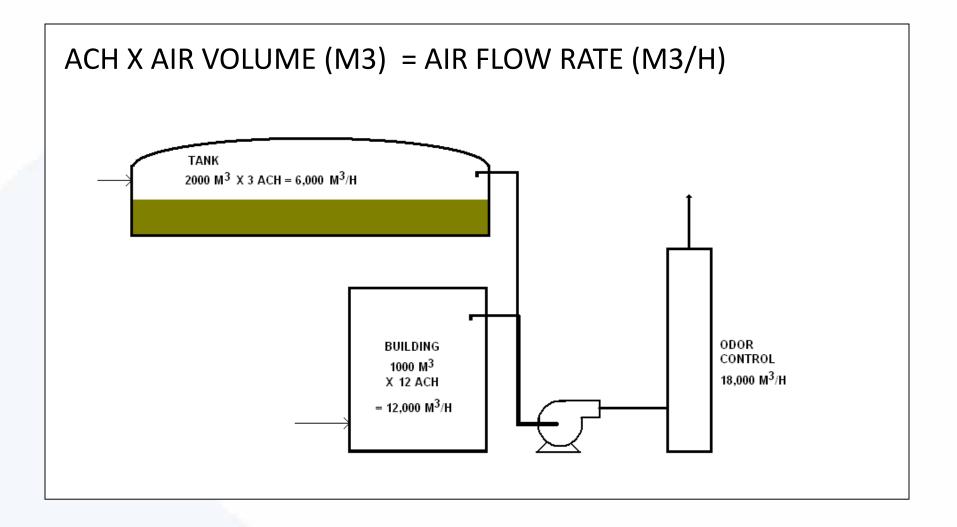
Nitrogen Compounds	Formula	Odour description	Odour Threshold ppb	Typical Ranges ppb
Ammonia	NH ₃	Pungent	17	1000-200000
Methylamine	CH ₃ NH ₂	Rotten fish	53	20-200
Dimethylamine	(CH ₃) ₂ NH	Fishy, ammonia	49	20-200
Trimethylamine	(CH ₃) ₃ N	Fishy, ammonia	40	20-200
Skatole	C ₉ H ₉ N	Fecal, repulsive	0.06	1-100
Indole	C₂H ₆ NH	Fecal, repulsive	1.4	1-100
Other Odorous Compounds	Formula	Odour description	Odour Threshold ppb	Typical Ranges ppb
Fatty acids		rancid, vinegar	0.1 to 1	
Aldehydes		rancid, acrid	2 to 400	10-1000
Ketones		sweet, fruity	200 to 4000	10-1000

About VOC's

- Volatile Organic Compounds (VOCs) are a large group of carbon-based chemicals that easily evaporate at room temperature. While some VOCs are odorous, many other VOCs are not. There are thousands of different VOCs produced and used in our daily lives.
- In sewage treatment the odorous VOC's are primarily amines, organic sulfides, mercaptans and some organic acids.
- Hydrocarbons are VOC's that are regulated because they contribute to photochemical smog. Although many are odorous, they are not generally a major contributor to municipal odors.
- Control of hydrocarbons requires very different technology from control of sewage odors.

There are many requirements beyond the Systems

- Odor containment (covers, buildings)
- Odor conveyance (ductwork, dampers)
- Odor control equipment
- Chemical dosing (chemical tanks, piping, dosing pumps)
- Blowdown streams (neutralization, drainage)
- Exhaust Stack (dispersion modeling)
- Odor monitoring (on-line monitors, performance tests)
- Controls & instrumentation
- Civil works, site preparation
- Mechanical installation
- Electrical installation
- Taxes, duties, customs clearance, handling, local transportation



Determining Airflow Rate Required

- Air Changes per hour (ACH) = ventilation rate
- Occupied spaces "typically" use 12 to 20 ACH
 - » Headworks building
 - » Dewatering building
 - » Pump Stations
- Unoccupied spaces "typically" use 3 to 6 ACH
 - » Storage Tanks
 - » Clarifiers
 - » Wet wells

Determining Airflow Rate Required

LOCALIZED ODOR CONTROL uses several smaller odor control systems located near each odor source. Sizes and technology may vary from one location to another.

- Eliminates complex ductwork and air flow balancing
- Can use smaller and more focused technology for each source
- Easy to install

CENTRALIZED ODOR CONTROL uses ductwork to convey odors from odor sources to common central odor control system.

- Allows easier redundancy
- Common parts
- Simpler maintenance

Chemical Scrubber Systems

- <u>Technology</u>
- <u>Design</u>
- Features & Benefits
- Process Flow Diagram
- General Arrangement Drawing

Technology Comparison for Chemical scrubbers

Benefits:

Most reliable and flexible vapor phase treatment technology

High removal efficiency (99.5%+)

Can respond instantly to changing H2S loads

Small footprint required (150 m/min velocity)

Can remove any water soluble compound

Can run intermittently

Drawback :

Chemicals required, typically sodium hydroxide (NaOH) and sodium hypochlorite (NaOCI), which can be costly

Footprint becomes an issue mostly in indoor or congested installations

Types:

Vertical, counter-current (most efficient) Horizontal, cross-flow

Chemical Scrubber Design Configurations

There are many ways to contact a liquid and a gas:

- Countercurrent vs. Co-current Flow
 - Refers to relative direction air and liquid flow
 - Countercurrent is more efficient, requiring 50-100% less packing to achieve equivalent performance

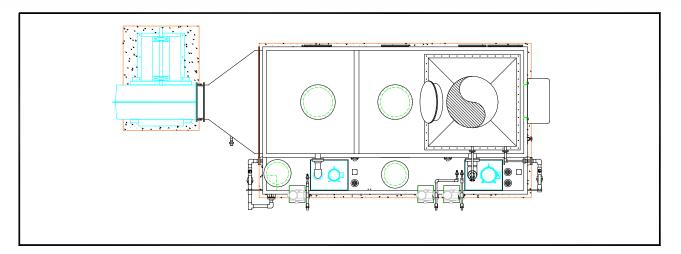
- Single Stage vs. Multiple Stage

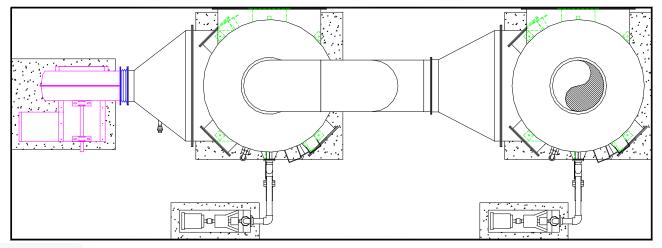
 Multiple stage provides more process chemistry options and can reduce chemical usage by 50% or more

Vertical Flow vs. Horizontal Flow

- Vertical countercurrent flow gives most efficient mass transfer.
- Horizontal air flow with vertical downward liquid flow does not provide reactant evenly over packing cross section

New Chemical Package Systems


- Typical vertical, counter-current "Packed Towers" are often 6.0 meters or more in height.
- Past footprint constraints alleviated by "turning the tower" on its side, which causes the air to travel perpendicular through the vessel in a horizontal, crossflow arrangement. This arrangement causes some air to short-circuit across the top of the media.



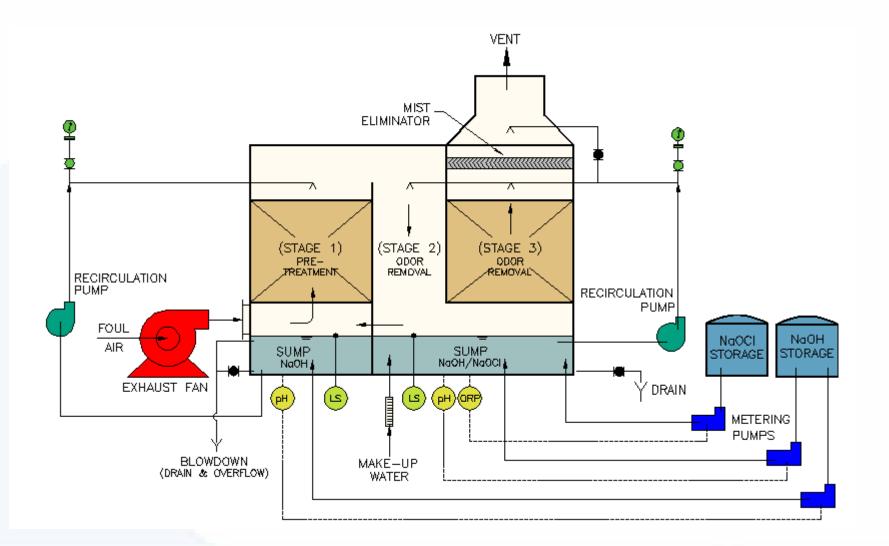
Rectangular, packaged units have multiple compartments of packing side-by-side and reduce the height to 3.5 meters or less. Generally, at least two of these compartments are vertical, countercurrent arrangement. An extended sump allows pumps, probes, instruments and controls to be pre-installed and pre-wired.

Footprint Comparison (40,000 m3/h)

Chemical Package Systems (CPS Series)

- Provide the benefits of two-stages of scrubbing in a compact footprint
- Significantly reduced overall height (typically less than 3.5 meters vs. 6.0+ meters for a traditional packed towers

All Components Pre-Installed Factory Assembled and Tested Field Assembly Limited to Fan, Stack and Chemical Storage Tanks Ease of Installation Start-up Simplicity System Responsibility Guaranteed Performance (99.5%+ Removal)



Minimal Chemical Consumption

- Pre-treatment stage eliminates approximately 70% of odors using a less expensive chemical
- Complete utilization of chemicals prior to discharge with multiple sumps
- Counter-current chemistry
- Optimal process control

Process Flow Diagram

Multiple Stage Process Configurations

- The multi-stage Process Can Be Configured in Several Ways:
- (2-Stage or 3-Stage designs)
- For H2S removal up to 100 ppm
 Stage 1 = NaOH,
 Stage 2 = NaOCI + NaOH
- For high H2S (> 100 ppm)
 Stage 1 & Stage 2 = NaOH
 Stage 3 = NaOH + NaOCI)
- For NH3/amines and H2S/sulfides
 Stage 1 = H2SO4
 Stage 2 = NaOH
 Stage 3 = NaOCI + NaOH
- For high mercaptans and organic sulfides
 Stage 1 = NaOCI + NaOH
 Stage 2 = NaOH

Multi-stage Scrubber Chemistry

Ammonia Stage: Optional

 $2NH_3 + H_2SO_4 \longrightarrow (NH_4)_2SO$

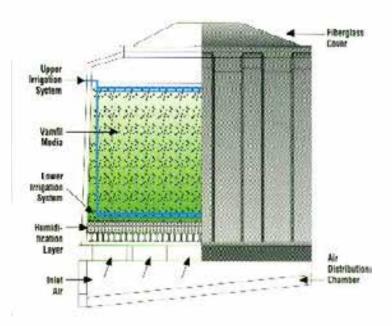
H2S Pre-treatment Stage: may be one or more stages

 $H_2S + 2NaOH \longrightarrow Na_2S + 2H_2O$

H2S Final Polishing Stage

 $H_2S + 2NaOH + 4NaOCI \longrightarrow Na_2SO4 + 4NaCI + 2H_2O$

Biological Odor Control Systems

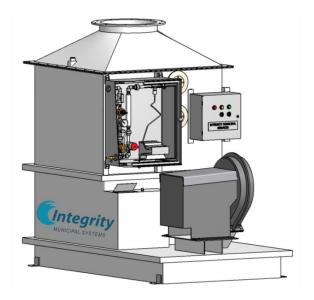


Biological Process

- Biological odor control systems are designed to promote the growth of sulfur-oxidizing bacteria which under proper conditions will biologically oxidize H₂S and other sulfur compounds to soluble sulfates
- Requires a liquid film to transfer odorous compounds from the gas phase to liquid and make those compounds "bioavailable"
- H₂S is removed under acidic pH conditions and generates acid (H₂SO₄)
- Organic odors require higher residence time and neutral pH conditions

Requirements of Sulfur-Oxidizing Bacteria

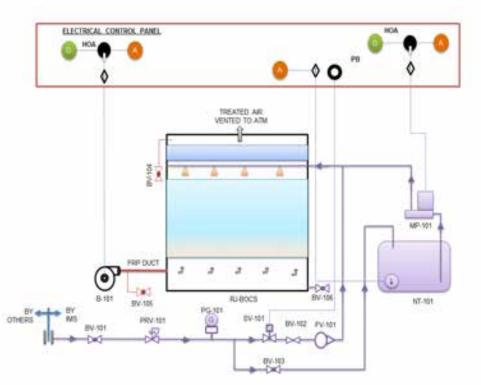
- Energy source:
 - H_2S and other sulfur compounds
- Carbon source:
 - Organic matter (heterotrophic bacteria)
 - Carbon dioxide (autotrophic bacteria)
- Nutrients: nitrate, phosphate, potassium
- Water
- Oxygen $(H_2S + O_2 \rightarrow H_2SO_4)$
- Temperature (10 to 50°C)
- Time (for absorption and reaction)


Sulfur-Oxidizing Bacteria

Species		Primary Electron Donor	pH Range
Thiobacill	us - grow poorly in organic media		
	Thiobacillus thioparus	H2S, sulfides, sulfur, thiosulfate	6 to 8
	Thiobacillus denitrificans	H2S, sulfur, thiosulfate	6 to 8
	Thiobacillus neapolitanus	sulfur, thiosulfate	5 to 8
	Thiobacillus thiooxidans	H2S, sulfides, sulfur, thiosulfate	2 to 5
	Thiobacillus acidophilus	sulfur	2 to 4
	Thiobacillus ferroxidans	sulfides, sulfur, ferrous iron	1.5 to 4
Thiobacill	us - grow well in organic media		
	Thiobacillus novellus	thiosulfates	6 to 8
	Thiobacillus intermedius	thiosulfates	3 to 7
Other Sul	fur-oxidizing bacteria		
Beggiatos	spira	H2S, thiosulfate	6 to 8
Thiotrix		H2S	6 to 8
Thiomicro		H2S, thiosulfate	6 to 8
Thermoth		H2S, sulfite, thiosulfate	6.5 to 7.5
Sulfolobu		H2S, sulfur	1 to 4

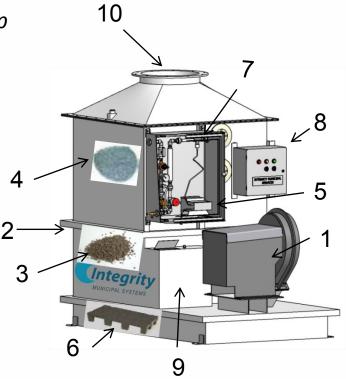
Biological Odor Control System

- Two-stage biological system that provides point source odor control.
- Biological reaction phase for the removal of H₂S in the first stage with an inert inorganic media widely used for biological treatment
- Polishing Second stag for H₂S and organic odors
- Compact design
- 99 +% removal Efficiency
- Capacities up to 6000 m³/h
- Plug & Play Installation


I-BOx™

How It Works

The system is comprised of two distinct process stages that can designed to be site specific depending on the type and concentration of odorous compounds


- <u>STAGE 1</u> is designed to remove primarily hydrogen sulfide (H₂S) by promoting the growth of acidophilic, sulfur-oxidizing bacteria
- <u>STAGE 2</u> is used to remove any remaining hydrogen sulfide as well as other odorous organic compounds.

Major System Components

- 1. FRP Exhaust Fan with Transition to Vessel Inlet
- 2. Premium Vinyl Ester FRP Vessel with Extended Sump
- 3. Inorganic Biological Media (Stage 1)
- 4. Activated Carbon Media (Stage 2)
- 5. Nutrient Pump
- 6. Air Distribution System
- 7. Water panel with Media Irrigation System
- 8. FRP Control Panel with VFD
- 9. Nutrient Tank
- 10. FRP Exhaust Stack

I-BOx[™] Media

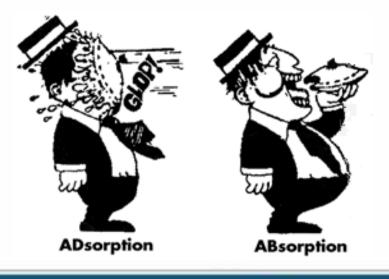
CLAY MEDIA

PELLETIZED CARBON MEDIA

I-BOx™ Advantages

- High air flow rate (~450 m³/h per m², compared to 100 m³/h per m² for conventional organic biofilters)
- Inorganic media biofilter → long media life, preferential development of autotrophic bacteria
- Quick acclimation \rightarrow specialized media adsorbs odors during acclimation period, for immediate H₂S removal
- Targets inorganic (H₂S) <u>and</u> organic odors
- Compact Footprint
- Skid mounted for easy, low cost installation
- Low Operating Cost

Carbon Odor Control Systems



<u>AD</u>sorption — physical adherence of molecules to surface of media

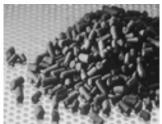
<u>Ab</u>sorption — soaking up of molecules into media or solution

Available Odor Control Carbons

Standard, Untreated Granular or Pelletized Activated Carbon

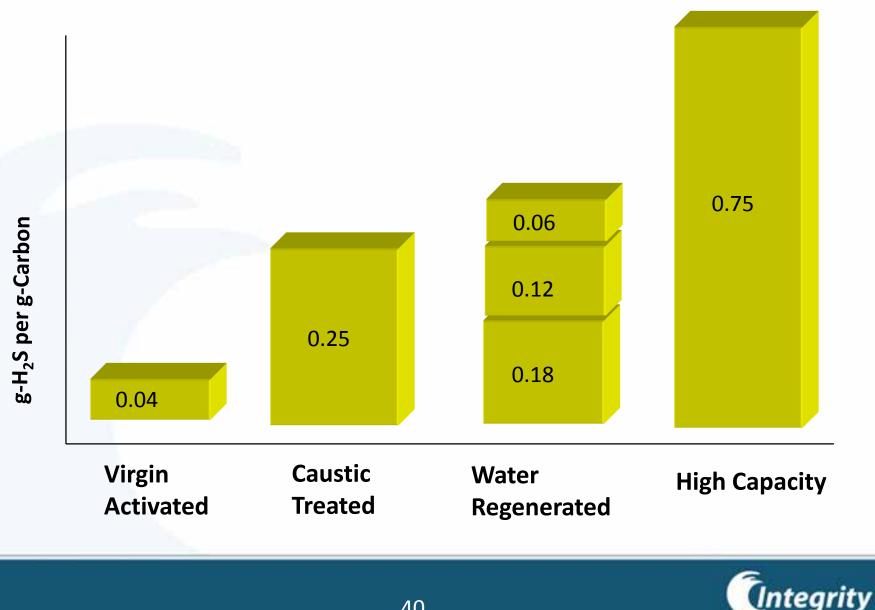
- Bituminous Coal Based
- Coconut Shell Based

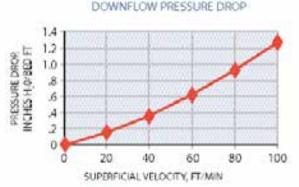
Chemically Treated Activated Carbons

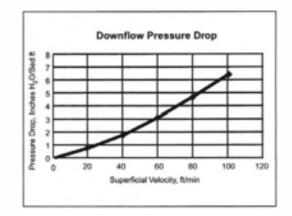

- Caustic Impregnated, KOH and NaOH
- KI Impregnated

"High Capacity" Carbons Based Adsorbents

- Water regenerable carbon
- Natural high mineral carbon media
- Sulfur Selective Odor Control Media




Carbon Capacity Comparison


MUNICIPAL SYSTEMS

Granular vs. Pelletized Carbons

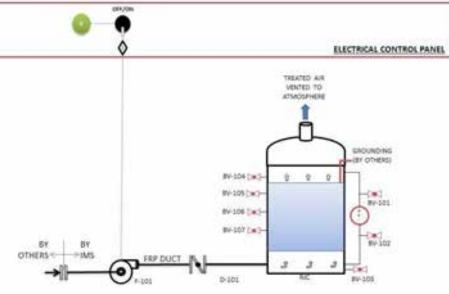
Granular and Pelletized carbons have similar odor removal capabilities, however pelletized carbons have much lower pressure drop, and hence lower energy usage.

Pelletized Carbon

Granular carbon

Factors That Influence the Carbon Loading Capacity

- Relative Humidity
- Temperature
- Contaminant Properties
- Contaminant Concentration
- Pressure (Vacuum)
- Gas Flow Rate (EBCT) and Superficial Velocity
- Heat of Adsorption
- System Configuration



How It Works

The exhaust fan operates continuously, pulling foul air from the process area and passing it through the carbon media. A volume control damper at the system inlet allows regulation of airflow through the carbon adsorber.

Inside the vessel, the foul air flows through a densely packed bed of activated carbon. The odorous compounds are removed from the airstream through a combination of physical adsorption and chemisorption.

Odorous compounds are physically adsorbed in the carbon pores, and some may undergo chemical reaction to form elemental sulfur and sulfuric acid. This process continues until the activated carbon pores are filled up and the odorous compounds break through and are released out the stack.

Single & Dual Bed Carbon Adsorbers

- Air flow rates to 6,800 cfm (11,600 m3/h) for single bed, and 20,000 cfm (34,000 m3/h) for dual bed
- FRP construction
- Fan, stack, dampers, duct ship separately for field installation
- Media must be field installed
- Optional Acoustic enclosure
- Optional Grease filter
- Media change out more difficult in dual bed designs

Skid Mounted Carbon Adsorbers

- Compact systems up to 1400 cfm (2,400 m³/h)
- Factory assembled & skid mounted
- FRP or polypropylene construction
- FRP Exhaust Fan
- Conventional or High Capacity carbo
- Variable speed fan option
- Acoustic enclosure option
- Grease filter option

Is Carbon a Viable Technology?

Advantages:

- Lower capital cost
- Treat H2S and many organic odors
- Moderate air flow capacity (1000 m3/h/m2)
- Good response to odor spikes

Disadvantages:

- Limited H2S/odor capacity
- Can be high operating cost because media replacement/regeneration can be expensive
- Limited capacity for some organics odors

Best Application:

- Low odor levels (< ~1-20 ppm)
- Polishing stage behind chemical or biological systems

Factors to Consider

For any given application, the selection of the best technology may be based on many factors, including:

- Capital cost for Equipment
- Installed cost
- Operating cost
- Source of funding and budget
- Maintenance requirements
- Reliability
- Safety
- Performance (% removal)
- Size (footprint, height)

Each Technology has its Niche

There is no one technology that is best in every application. Each technology has it's niche.

Wet Chemical Scrubbers:

- Can treat larger air flows in a single vessel
- Have more compact footprint
- Are less sensitive to variations in actual vs. design H₂S loadings
- And are effective for a wider range of odorous compounds (H₂S, NH₃, amines, organic sulfides).

Each Technology has its Niche

Biological Systems:

- Have very low operating and maintenance costs
- Do not require handling of hazardous chemicals.
- Operating cost is not proportional to H₂S concentration (hence they are well suited to high H₂S applications)

Each Technology has its Niche

Activated Carbon Systems:

- Are the simplest and lowest maintenance systems (until you need to change out the carbon)
- *Require only electrical power to operate (no water, no chemicals)*
- Are efficient for a wide range of compounds.

Summary OC Technology Selection

ТҮРЕ	CAPITAL COST	OPERATING COST	MAINTEN- ANCE	FOOT- PRINT	ODOR REMOVAL	H2S PPM	H2S % REMOVAL	NH3?
CHEMICAL SCRUBBERS	\$\$	\$\$\$	\$\$\$	Small	> 95%	0 - 50 +	99.9%	YES
BIO-TRICKLING SCRUBBERS	\$\$\$	\$	\$\$	Large	75-90%	2 - 500 ppm	99.0%	Some
HIGH CAPACITY CARBON	\$	\$\$+	\$+	Medium	> 90%	0-20 ppm	99.9%	NO
VIRGIN ACTIVATED CARBON	\$	\$\$+	\$+	Medium	> 90%	< 1 ppm	99.9%	NO

Applications

Information needed to select appropriate technology

- Air Flow Rate or Ventilation Rate
- *H*₂S Concentration (average and peak)
- Required level of odor removal (H₂S and OU)
- Detailed performance and equipment specifications if available
- Testing requirements
- Concentration of other odorous compounds present
- Site location
- Temperatures (ambient air and odor stream)
- Need freeze protection?
- Indoor or Outdoor location?
- Hazardous area classification?
- Local 3-phase and 1-phase voltage and Hertz

Contacts

Georgios Ioannou

Integrity Municipal Systems Director of Sales EMEA

El. Venizelou 263-265 Kallithea 17673 Athens Greece Mobile: (+30) 693 610 1300 E-mail: <u>georgios@integrityms.net</u>

Headquarters

13135 Danielson Str. Suite 204 Poway, CA 92064 USA

