

Advances in Diamond Electrochemistry:

Water Arabia 2015

Nuhu Dalhat Mu'azu Nabeel Jarrah

Environmental Engineering Department University of Dammam

19th February 2015

Outline

- Introduction
- Electrochemical AOP for wastewater treatment
- The boron doped diamond (BDD) thin film electrodes
- Applications of BDD in industrial wastewater treatment
- Challenges and Prospects

Introduction

- 21th Century has witnessed record increase in global urbanization and industrialization which let to dramatic increase in industrial wastewater production
- Improper discharge of wastewater containing toxic substances is detrimental to the ecosystem and sustainable development
- Increased demand for water conservation and compliance with stricter environmental regulations have raised the awareness and the need for costeffective wastewater treatment schemes

Wastewater Treatment Technologies

- Emergence of several of biological, physical and chemical treatment technologies
- Biological technologies are more preferable due to their low cost and cheaper materials requirements
- Due to bio-refractory nature of some pollutants a number of innovative technologies emerged to supplement or replace conventional biological technologic
- Chemical oxidation techniques became amongst most attractive techniques for effective decontamination of industrial wastewater

Chemical Oxidation Techniques

Merits of EAOP

✓ High efficiency with proper choice of <u>anode material</u> and cell design

- ✓ Environmental compatibility: the main reagent used is <u>electron</u>
- ✓May require no additional of chemical reagents
- ✓ Operation at room temperature and atmospheric pressure
- ✓The efficiency can be easily increased by promoting indirect processes
- \checkmark Easy operation amenability to automation
- ✓ Pollutants can be completely destroyed: no by-product or residue production

EAOP for wastewater Treatment

Challenges to Wastewater Treatment Using EAOP

✓The difficulty in selecting suitable electrode material:

Low activity toward secondary reactions(e.g., oxygen evolution)
High activity toward pollutants oxidation

•Low cost-to-lifetime ratio

✓ Selection of most appropriate/optimal cell design and operating conditions

Simple and durable mechanical designHomogenous current distributionEnhanced mass transfer

✓ Other substances presence in the wastewater

✓ Accumulation of intermediate byproducts

Typical Anodic Materials for Wastewater Decontamination

Electrode	Example	Merits	Notable Demerits
Туре	Electrode		
			✓Accumulation of stable
	Graphite	√Cheap	intermediates
		✓Availability	✓Low over-potential
			✓Low current efficiency
Carbon based			✓Loss of activity due to surface
	Glassy carbon	✓Cheap	fouling
			✓Low over-potential
			✓Low current efficiency
	Stainless	√Cheap	✓Low overpotential
Metal	steal	✓ Electro-coagulation	✓ Short life
			✓ Residue generation
			✓Low current efficiency
	Platinum, gold,	✓Improved efficiency	✓Loss of activity due to surface
Noble Metals	rhodium, and		fouling
	palladium		✓Accumulation of stable
			intermediates
			✓Low over-potential
			✓Low current efficiency
			✓Expensive

Anodic Materials for Wastewater Treatment

Electrode Type	Example	Merits	Demerits
Metal Oxide	SnO ₂	 ✓ Improved overpotential 	 ✓ Limited service life ✓ Release of toxic ions ✓ Low current efficiency
	PbO ₂	 ✓ Improved overpotential 	✓ Release of toxic ions
	RuO ₂	 ✓ Improved overpotential 	 ✓ Accumulation of stable intermediates ✓ Low efficiency
	IrO ₂	 ✓ Improved overpotential 	 ✓ Selective oxidation ✓ Accumulation of stable intermediates
DSA-Type	Ti/SnO ₂	 ✓ High overpotential ✓ Improved current efficiency 	✓Limited service life

- Carbon based material
- Precious material occurring as natural mineral deposit
- A transparent crystal of tetrahedrally bonded carbon atoms that formed a face centered lattice structure
- The strongest known material
- Highest thermal conductivity
- ✓ An excellent electrical insulator with high resistivity

Synthetic Thin-film Diamond Surfaces

- The large band gap of un-doped diamond makes it electrically insulating and unsuitable electrode material
- ✓ Advances in electrochemistry let to invention of synthetic diamond film conductive
- Diamond films surfaces are rendered conductive by doping with boron, nitrogen, sulfur and phosphorous
- Majority of diamond electrodes currently in use are doped with boron
- Boron has low charge carrier activation energy compared to other dopants
- Boron doping leads to a p-type semiconductor while others form n-type semiconductor

Synthetic Thin-film Diamond Surfaces

Two major methods for artificially depositing or growing thin diamond films on based materials are

Method	Pressure	Substrate temperature
High Pressure High Temperature (HPHT)	50-100 kbar	1500-2000°C
Hot Filament Chemical Vapor Deposition (HFCVD)	< 27x10⁻⁵ kbar	750-850°C

BDD Electrodes using HFCVD

- Methane (0.5% 3% CH₄ in H₂) or acetone/methane mixture as carbon source
- Diborane or trimethyl borane used to introduce boron into the diamond material during film growth a boron containing substance is added to the deposition gas mixture
- Hydrogen as the carrier gas

BDD Electrodes using HFCVD

✓Wide range of boron doping levels: Semiconductors

✓Heavily doped films: Metallic conductivity

Oxygen Evolution for Different Anodes

Characteristics of BDD Electrodes

- High electric conductivity
- High potential window for OH[•] production with higher current efficiency (low oxygen evolution)
- Chemically inert, mechanically robust and very high stability to corrosion in aggressive environment
- ✓ Operating conditions ,pH \sim 14, temperatures \sim 500°C and current density \sim 500mAcm⁻²
- ✓ Non-Porous with low adsorption phenomena and high fouling resistance
- ✓ Stable as anode and cathode
- Complete mineralization of organic and inorganic impurities in water and wastewater
- ✓ Low ratio Cost/lifetime
- Morphology: varying shapes and sizes

Applications of BDD Elecrodes

- Degradation of toxic and biologically refractory organic compounds
- ✓ Treatment of actual industrial wastewater at bench and pilot scale
- Efficient water and wastewater disinfection
- Production of strong oxidants in-situ
- Electro-analysis of chemical compound
- Electro-synthesis of chemical compound
- ✓ Galvanic applications such as lead free chroming or recycling processes

EAOP for Wastewater Decontamination Using BDD Anode

✓High production of OH• radicals electrochemically in an anodic reaction in the wastewater to be treated

✓ Other oxidants can be produced from appropriate ions in the wastewater or added electrolyte(s)

Techniques for Wastewater Treatment using BDD Anode

1. Direct electrolysis

Oxidation of the pollutant on the electrode surface

2. Advanced oxidation processes Generation of large amount of OH·

3. Chemical oxidation

Several in-situ oxidants formed from the salts contained in solution

HARD OXIDATION CONDITIONS

- •Few or no intermediates are formed
- •Large conversion to carbon dioxide
- •Large current efficiencies only limited by mass transfer
- •Large amount of OH · generation
- Low side reactions
- •Formed polymer on surface can be destroyed to restore surface activity

EAOP using BDD Anode Potentials

- Successful TOC / COD removals were demonstrated from industrial watewater
- Halogenated Organics
- Heavy metals reduction- e.g Cr(IV)
- Phosphorous Organics
- Phenolic compounds
- ✓ Color-dyes
- ✓ Aniline
- Bacteria, viruses and fungi-Disinfection
- EDTA

	Applicant	Number of granted patents or applications *	Country of origin	LAM.
	Permelec Electrode LTD	4	Japan	
	Pro Aqua Diamantelektroden Produktion	4	Austria	
	Sumitomo Electric Hardmetal COR.	3	Japan	
Some applicants list of patents	Watkins Manufacturing Corporation	3	EE.UU	
treatments by electro-	Element Six LTD	3	Luxemburg	
oxidation with BDD	Industrie De Nora S.p.A.	2	Italy	
	Michigan State University & USA Energy	2	EE.UU	
	Kurita Water Industries LTD	2	Japan	
	Schwartzel, David, T.; Fraim, Michael, L.	2	EE.UU	
	A-Zone Technologies LTD	1	U.K	
	Battelle Energy Alliance, LLC	1	EE.UU	
	Deshmukh, Prasanna	1	India	
	Dow Global Technologies INC	1	EE.UU	
	Fuji Photo Film Co LTD	1	Japan	
	Kabushiki Kaisha Kobe Seiko Sho	1	Japan	
	Linxross INC	1	Japan	

Patents Applications by IPC (1998-2012) Industrial Wastewater Treatment using BDD

No. of Patents Applications by 4-digit International Patent Classifications (IPC) [Juan et al. 2014]

Trends Industrial Wastewater Treatment using BDD^{ERSITY or DAMMA} (1998-2012)

Trends in published patents, articles and citations related to treatment of Wastewater using BDD [Juan et al. 2014]

Applications of BDD in real industrial WW treatment

Industry	Wastewater	Treatment efficiency	Ref.	
	characteristics			
Automotive	motive 3200mg/1 COD		(Troster et al.,	
		Residual COD 400mg/L	2002	
Automotive A condensate from a cooling lubricant		CE > 90%; COD >500	(Troster et al.,	
	cycle in motor fabrication initial	mg/l	2002)	
	COD 2500 mg/l			
Paper and pulp	pH 6.6, conductivity		(Alexander et al.,	
	2.9 mS/cm, chloride concentration	COD 100%	2003)	
	528 mg/l and COD 4023 mg O ₂ /l.			
Motor	pH 5.19; conductivity, 3.74.	COD < 20 mg O2/1	(Alexander et al.,	
	COD=3200mg/L;hardness 5.2 dH,	CE 85% for COD >500 mg/l	2003)	
	chloride; 135mg/L	CE 50% for for COD < 500 mg/l		
	pH 6.62; conductivity, 5.67.	Residual COD 20 mg O2/l	(Alexander et al.,	
Motor industry	COD=1496mg/L;hardness less than	26	2003)	
-	1 dH, chloride; 43mg/L			
Fenton-treated	COD of nearly 700mg/L	TOC and COD decrease with	(Cañizares et al.,	
refractory olive oil mill	The conductivity= 2.5mScm-1.	time down almost to zero 2006)		
	pH 7.13			
136 factories from	Biological & electrocogulation	TOC 42.4%; Color 100%	(García-García et	
industrial park	pretreated COD=250 mg/l; Color=	COD 98%; SEC 0.112	al.)	
_	200 Pt-Co units; TOC= 557 mg/L	kWh		
Industrial WWT plant	pH 3.01; Total solids, % 1.24; COD	COD 27%	(Barrios et al.)	
raw sludge	12,200mg/L; sCOD 2120, mg L ⁻¹	sCOD 56%	2014	
Olive-oil	3000 mg dm_3 of COD and 840 mg dm_3	Complete mineralization	(Cañizares et al.,	
mills	of	with high current	2007)	
	TOC. Its conductivity is 2.29 mS cm_1 and	efficiencies		
	the pH is			
	around 6.			
Mustard tuber factory	pH 6.50	ammonium was	(Sheng et al.,	
	Conductivity (mS cm-1) 26.4	completely removed, and 80.4%	2014)	
	COD (mg L-1) 3,250	of COD was electrodegraded,		
	TOC (mg L-1) 980	with specific energy consumption		
	NHþ4	of		
	-N (mg L-1) 215	45.8 kWh m-3.		
Metal Plating plant	chromate-bearing industrial	complete reduction of 180 mg	(Velazquez-Peña	
	wastewater Cr(VI) mg L-1; pH 3.7	Cr(VI)/L in 25 min, with	et al., 2013)	
	Electrical Conductivity (mScm1)	40% less sludge produced		
	25.6	_ ^		

Applications of BDD in real industrial WW treatment

cork-Processing	COD 2000mg?L TPh 142mg/L; pH 6.5-7; conductivity 0.7-0.77 mS/cm	after 8 h, reductions greater than 90% were achieved for COD, dissolved organic carbon, total phenols and colour	(Fernandes et al., 2014)	
dairy industry	cheese whey diluted with domestic sewage; pH 5-5.5; COD 75-100 g/L; BOD5 23-28 g/L; DOC 8-10 g/L; NH4-N 40-50 mg/L	COD removal was 97 and 89 % after 2 h	(Katsoni et al., 2014)	
Petrochemical industry	oil is separated from Initial COD 2,746mg L ⁻¹ ; 63.88 µS cm-1;pH 7.9	76.2- 98.7 % of COD removal	(Vieira dos Santos et al., 2014)	
Petrochemical industry	Pretreated produced water initial COD 1,588 mg L-1; pH7.5 ;Conductivity =4.64 μ S cm-1; 2.7 mg L ⁻¹ phenol and 15 mg L ⁻¹ oils and grease	50.3- 59.1 % of COD removal	(Rocha et al., 2012)	
Petrochemical	Produced water (fresh, brine and saline) COD 250-11,541mg/L TOC 458-15,015 mg/L Conductivity 0.61-143.9 mS cm_1 pH 6.87-7.03 salinity 78.8 -43170mg/L	2 hours Fresh PW: COD 100% TOC 40-90% 4 hours Brine PW: COD 100% TOC 92-99% Saline PW after 8hours COD 44% ; TOC < 37%	(da Silva et al., 2013)	
Petroleum refinery	Phenol concentration 192.9 mg/L COD of 590 mg/L. Electrical conductivity 15.63 mS/cm.	96,04% COD removal 99,53% Phenol removal	(Yavuz et al., 2010)	
Steel plant	COD mg/L 120-190 TOC mg/L 25-36 Conductivity µs/cm 22300 TDS mg/L 14745	COD 100% in 1.5 hour at 25 mA/cm2	(Zhou et al., 2011)	

Commercial BDD Electrode Cell for Wastewaters Treatment

- CONDIACELI CONDIA 1 THE . CONDIAS
- ✓ Batch recycling reactor
 ✓ Tank Capacity 250-1000L

Large Industrial Cooling Water Disinfection (Rychen et al 2010)

- ✓ 7.5 m3/h; Continuous operational run 2-3 years with good feedback from costumers
- ✓Cost-effectiveness

Treatment of Phenolic Wastewater Treatment

Phenol, Oxidation Byproducts,TOC and COD Analyses

Zero Sludge Production

Assessment of Phenol Mineralization

Assessment of Phenol Mineralization

Pathways for Phenol Mineralization

Mass Transfer Effect: Current and Energy Efficiencies

Initial Phenol Concentration, mgL⁻¹

Mass Transfer Effect: Current and Energy Efficiencies

1.Phenol-NH ₄ ⁺
2.Phenol-CN ⁻
3.Phenol -S ²⁻
4.Phenol-NH ₄ +-S ²⁻
5.Phenol-NH₄⁺-CN⁻
6.Phenol-CN ⁻ -S ²⁻
7.Phenol-NH₄⁺-S²CN⁻

% Decrease in COD Removal Specific Energy Consumption

Treatment Optimization using RSM

Treatment Optimization using RSM

Inorganic Species Removal Efficiencies

Mixed Components	Cyanide		Sulfide		Ammonium	
	Initial Concentration, ppm					
	100	200	100	200	100	200
Phenol-NH ₄ +					1.00	1.00
Phenol-CN ⁻	0.8858	0.9999				
Phenol -S ²⁻			0.9990	1.00		
Phenol-NH₄⁺-S²⁻			0.9994	1.00	1.00	1.00
Phenol-NH₄⁺-CN⁻	0.9335	0.9999			1.00	1.00
Phenol-CN S ²⁻	0.8346	0.9997	1.0000	1.00		
Phenol-NH₄-S²-CN⁻	0.8421	0.9758	0.9997	1.00	1.00	1.00

Challenges and Prospects

- BDD electrode, an excellent anodic material for EAOP treatment of industrial wastewater
- Lower efficiencies are attributed to diluted industrial wastewater
- Cost prohibiting challenges applications of BDD for large scale industrial WWT
- Bottle-neck: Reactor configuration design and process optimization are imperative in ensuring optimal and effective decontamination
- A promising technology: Recent advances in BDD production technology/reactor design and recorded cost-effectiveness

Thank you for your Attention