

Water Arabia 2015

Improvements to Brackish Water RO plants

Peter Szappanos Veolia Arabia - Operations

Water

The contract

- Client: National Water Company Riyadh City Business Unit (RCBU)
- Management contract from 2008 to 2014
- Client's expectations:
 - Align RCBU with NWC strategy
 - Improve services
 - Prepare company for future privatization
 - Enable transition from public to private

شركة المياه الوطنية National Water Company

- Introduce performance based culture and best practices
- Fixed fee + incentives based on CAPEX and OPEX savings (HR excluded)
- 4 KPIs, 33 performance indicators (26 with O&M), 37 deliverables
- Veolia managers in key positions with Saudi counterparts

Riyadh water supply

Demand

5.5 million inhabitants
4-5% growth per year
2.1 million m3/day supplied
Continuity of supply: 70%
Winter / summer peak factor 1.2

Water sources

- o 50% deep wells
- o 50% desalinated water from SWCC
- Raw water quality (TDS 1300-2000, Iron 0.2-2, Silica 15-50, Total Hardness 700-1300, Total Alkalinity 120-210 mg/L)

Assets

- 40 treatment plants (37 with RO)
- 1,220,000 m3/day installed capacity
- o 630,000 m3/day RO capacity
- 280 deep wells (500 2000m depth)
- o 60,000 assets
- First plant in early 1960s, RO introduced in late 1980s early 1990s
 OPEX 576mSAR/yr (470mSAR RO)

Employees

- 4,200 employees in total (water plants O&M 1,200)
- Direct employees: 98% Saudi nationals
- Outsourced RO capacity: 22%

Main challenges

Produce more water
Minimize water quality failures
Improve equipment availability
Optimize OPEX
Improve operators skills

Improvements from 2008 to 2014

	2008	2014	Change
ALL PLANTS			
Installed (MLD)	1004	1220	+21%
Actual (MLD)	710	1110	+56%
Utilization	71%	91%	
PLANTS WITH RO			
Installed (MLD)	594	790	+33%
Actual (MLD)	382	642	+68%
Utilization	64%	80%	
Installed (MLD) w/o new RO	594	594	
Actual (MLD) w/o new RO	382	465	+22 %
Utilization	64%	78%	
WATER QUALITY COMPLIANCE			
Compliance	<90%	99.75% Chemical / 99.99% Microbiology	

Approach

Asset Management

Challenges

- No asset register
- Condition of assets unknown
- Assets operated well beyond their expected design life
- Unclear selection criteria for asset replacement
- Poor delivery of new assets (deadlines, quality, handing over)
- Silo mentality between Ops and AS
- O&M needs not taken on board

- Asset condition survey and register
- Criticality survey
- Summer Action Plan
- Investment Planning
- Focus on reliability, availability and criticality, serviceability when selecting equipment for replacement
- Improved cooperation between Asset Services and Operations (early buyin)
- Standard specifications
- Clear handing over procedures

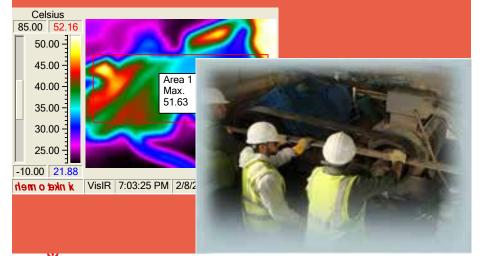
Asset Renewals (examples)

oFull RO replacement – 1 site Stage conversions – 3 sites Backwash system upgrade 2 sites •Chemical dosing 4 sites Cooling tower replacements 5 sites

Energy Optimization

Challenges

- 20% reduction expected by 2014 against a 2.33 kWh/m3 baseline
- Production uses 80% of RCBU's consumption
- Oversized pumps in boosters
- Low efficiency wellpump motors
- o 3-stage ROs
- Fixed speed pumps



- 8% reduction achieved
- Energy efficiency audit in 2009
- More efficient motors in wells (10 mSAR/yr saving) min 20 units per year replaced
- Replaced pumps in 4 boosters
- Accelerated RO stage conversion program (one plant left)
- Pressure management in the network (modulated PRVs)
- VSDs is standard for new boosters
- Set up internal energy efficiency unit

Maintenance Optimization

Challenges

- 60,000 assets across water plants
- >95% availability expectation for critical equipment
- Reactive state maintenance
- Maintenance often driven by spares availability
- Legacy equipment issues

- Asset survey and register
- Criticality survey
- Equipment availability 95.5% in 2014
- Number of planned WOs up by 110%
- Completed WOs up to 96%
- Rolled out CMMS
- Introduced predictive maintenance (vibration, thermal, oil analysis)
- Winter Shutdown Maintenance
- Framework contracts
- Standard specifications
- Root cause analysis
- Closer to Planned-Proactive state

Process Optimization

Challenges

- Recurring water quality failures especially in TDS
- Legacy RO membranes
- Pre-treatment problems
- High chemical cost
- Sampling irregularities
- Lack of filter and RO performance monitoring
- Treatment of return backwash

- Conducted chemicals savings review
- Phasing out lime softening and introducing antiscalent
- Replacing soda ash with caustic soda
- Reduced chemicals costs by 54%
- Standardized RO membrane selection
- Uniform sampling (sampling plan)
- Optimized coagulant dosing for back wash treatment
- RO operations and troubleshooting training
- On-line analyzers

People

- Carried out Skills Assessment (by Veolia Foederis system)
- Training Needs Analysis
- Training (safety, technical, soft skills and management skills, international training, Veolia Knowledge Transfer training)
- Up to 25,000 training days/year
- Technical training: RO operation, troubleshooting, Chemical preparation and dosing, Process optimization, Sampling, etc
- New job descriptions
- Annual appraisal and bonus system
- Management by objectives
- Overtime optimization

Safety

- Change in safety culture it is an integral part of operations and critical for business continuity
- RCBU targets based on severity and frequency
- New safety organization
- Safety procedures: full revision and update
- Training on all procedures
- New safety equipment
- Comprehensive safety survey and action plan
- Accident reporting

Specific areas:

- Acid dosing
- Pressure vessels
- Chlorine dosing

Quality Management

- Set up a Performance Team
- Formal certification (ISO 14001, OHSAS 18001, ISO 9001) for 2 sites
- Standard Operating Procedures: 30 per plant for Operation and 100 for maintenance
- Document Management system
- Standard specifications
- Internal audits

Conclusions

- Significant gains were made (volumes supplied, water quality, equipment availability, OPEX savings)
- Some targets were missed mainly due to budget limitations
- Change the mindset in many key areas
 - Planning and budgeting
 - Performance management / Accountability
 - Operation and Maintenance
- Active support from Client (National Water Company) and RCBU employees
- Veolia's expertise and experience was key in meeting the contract challenges

Lessons learnt

- Performance base line must be clear to avoid disputes over incentives
- Cost of change and impact of targets must be well understood (especially in terms of asset renewals) in advance
- For lasting impact knowledge transfer is key (sufficient training budget is paramount!)
- Support services (Finance, HR, Procurement) must also be up to speed otherwise targets cannot be reached
- Duplicated management structure can be at times slow down decisionmaking

Way forward for RCBU Water Plants

Challenges / changes

- Supply will outstrip demand (due to increased supply from SWCC)
- Strategic project will affect the way plants work
- Existing deep wells: reduction in dynamic water levels and gradually deteriorating water quality
- More pressure to improve quality and efficiency
- From demand to efficiency driven environment

Possible answers

- Process optimization (low pressure membranes, fine tuning of pretreatment, etc)
- Continue with energy and chemicals optimization
- Improve automation levels
- Headcount optimization (find additional tasks, in-source activities, re-train)
- Closure/mothballing of least efficient plants?
- Maintenance: reach Proactive Right First time stage
- Obtain ISO certification for all plants

Water Arabia 2015

Thank you

Peter Szappanos Veolia Arabia - Operations

Water