

TREATMENT OF MTBE CONTAMINATED WATER USING UV/CHLORINE ADVANCED OXIDATION PROCESS

A. Kedir, B. Tawabini, A. Shaibani, A. Bukhari

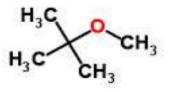
By

Feb.19th, 2015

Water Arabia 2015 Le Meridien | Khobar, Saudi Arabia

17 to 19 February, 2015 Engineer Abdullah Al-Hussaye Le Meridien | Khobar, Saudi Arabia

ster of Water and Electricit


Innovative & Nallable Trater and Tratercater Technologies for Sectainable Tester Chally

Presentation Outline

- 1. Introduction
- 2. Research Objective
- 3. Methodology
- 4. Result and discussion
- 5. Conclusion

Introduction

Methyl-Tertiary Butyl Ether (MTBE)

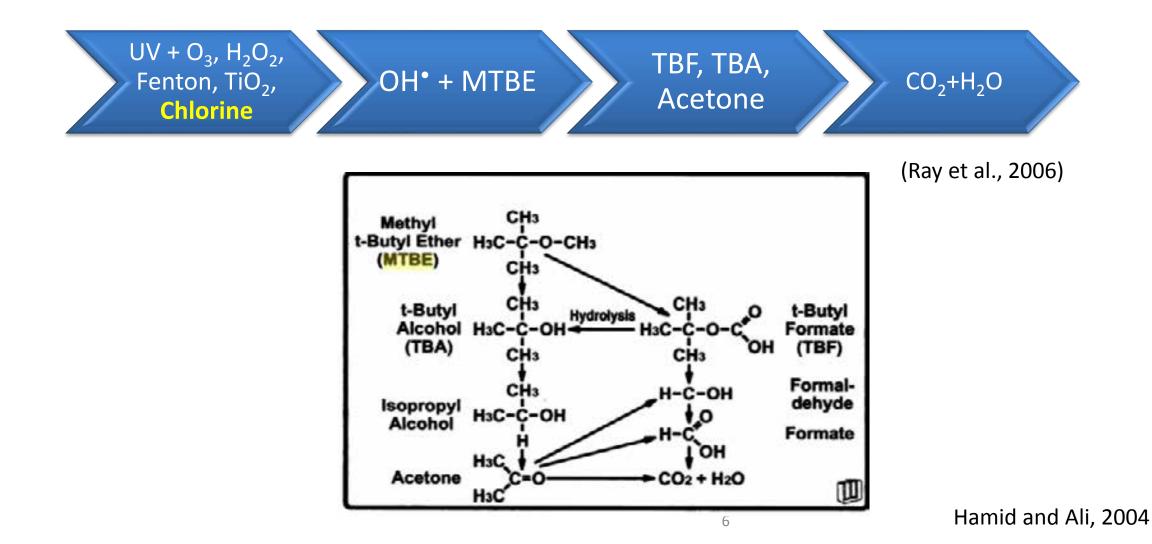
Information	Description
Production	 65% of the world MTBE production in volume by China, USA, Saudi Arabia,
	Netherlands and South Korea,
Uses	90% used as gasoline additive to raise the oxygen content
	 11-15% by volume blended with gasoline
Physicochemical	 High solubility in water : 50,000 mg/L, 30times more soluble than Benzene
properties	Low Koc : difficult to be adsorbed
	 low Henry's constant (0.02-0.05 at 25 C) – difficult to strip out
	 Resistant to microbial decomposition in water

(WHO, 2005; USEPA; ATSDR; Health Canada 2006; PME)

Introduction

Information on Methyl-Tertiary Butyl Ether (MTBE)

Information	Description
Environmental	 Leakage from Underground Storage Tank, Spills during transport, & Industrial
sources & fate	discharge; common groundwater contaminant in USA, Canada, & EU countries
Exposure pathways	 Ingestion, inhalation, absorption
Health effect	 Rising health concern, potential carcinogenic risk to human
Standard for water	PME G.W: 20µg/L, USEPA : 20–40µg/L advisory level, WHO & Canadian GV: 15µg/L


(WHO, 2005; USEPA; ATSDR; Health Canada 2006; PME)

Different treatment methods used for MTBE removal

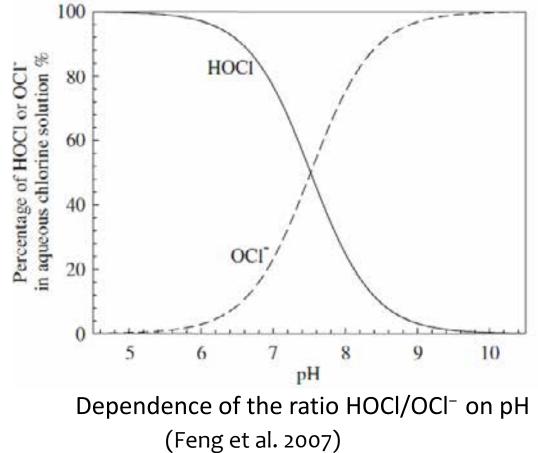
MTBE Removal methods	Comment		
Adsorption (GAC)	Low affinity to solids/spent adsorbent disposal		
Air Stripping	Expensive , have higher operating costs & water to air contaminant transfer		
Biodegradation	Less efficient, long treatment time, not well developed		
Advanced oxidation processes	A promising technology that completely mineralize the contaminants into $H_2O \& CO_2$		
(Levchuk, Bhatnagar et al. 2014)			

Hamid and Ali, 2004

Different treatment methods used for MTBE removal

- Chlorine uses and chemistry:
 - chlorine is used as **disinfectant for water and wastewater treatment**

 $NaOCI \leftrightarrow Na^+ + OCI^-$


 $OCI^- + H^+ \leftrightarrow HOCI$

• Chlorine as Oxidant in AOP technology

 $HOCI + UV photons \rightarrow OH + CI$

 $OCl^{-} + UV \text{ photons} \rightarrow O^{-} + Cl^{-}$ $O^{-} + H_2O \rightarrow OH^{-} + OH^{-}$

(Jin et al. 2010)

Different Advanced Oxidation Processes used to remove MTBE in water

Methods	Scale of study	MTBE removal (%)	Treatment time	References
Fenton	Bench scale	99	120 min	Xu et al. 2004
UV/H2O2,	Bench scale	98	60 min	Hu et al. 2008
UV/ZnO/H ₂ O ₂	Bench scale	100	75 min	Eslami & Nasseri, 2008
UV-vis/TiO2/O2	Bench scale	82	75 min	Eslami et al, 2009
UV/TiO2	Bench scale	80	60 min	Hu et al. 2008
UV/TiO2	Bench scale	>95	30 min	
UVC/CNTs	Bench scale	70	30 min	Tawabini et al. 2013
UV/CNT-TiO2	Bench scale	>60	120 min	
UV/H2O2	Bench scale	>95	20 min	Taurahini agu
UV/O3	Bench scale	70-80	Tawabini. 2014 30 min	
UV/Chlorine	Bench scale	????	????	Not reported

UV/Cl₂ AOP water treatment

Contaminant type	Removal efficiency	Reference
Methylene Blue (MB) and Cyclohexanoic Acid (CHA)	■ 80-90%	Chan et al, 2012
Trichloroethylene (TCE)	 2.3 times more efficient than UV/H₂O₂at pH 5 	Wang et al., 2012
Model Emerging Contaminants: 17-a-Ethinylestradiol, Benzotriazole, Tolylriazole, Desethylatrazine, Carbamazepine, Sulfamethoxazole, Diclofenac,Iopamidole	 85-100% 30-75% energy reduction 30-50% cost saving than UV/H2O2 	Sichel et al, 2011b
2-methylisoborneol	 80-90% efficiency at pH 6 	Rosenfeldt et al., 2013

Research Motivation and Objectives

- > High production and wide use of MTBE, growing Health concern, & regulated
- > MTBE is the common ground water pollutants and expensive to treat
- There is need for investigating an alternative treatment technologies to remove MTBE in water
- > No work has been reported on the removal of MTBE in water by UV/chlorine AOP

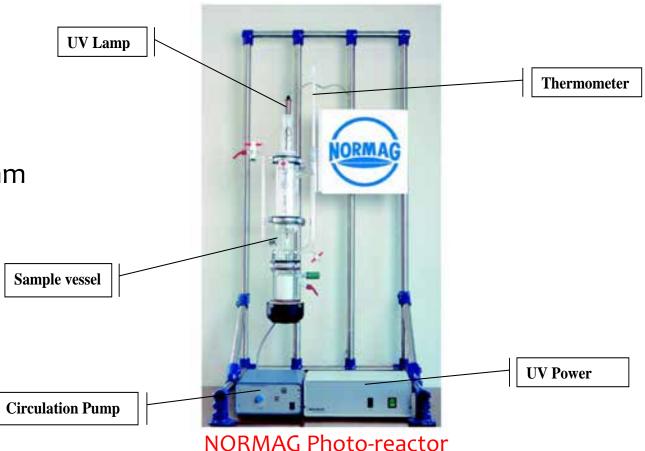
The main objective of this study was to assess the efficiency of MTBE removal in water using UV/Chlorine AOP

Methodology

Instruments used

NORMAG Photo-reactor
 Thermo Scientific GC-MS
 Desktop pH meter

Thermo GC/MS with HS/P&T

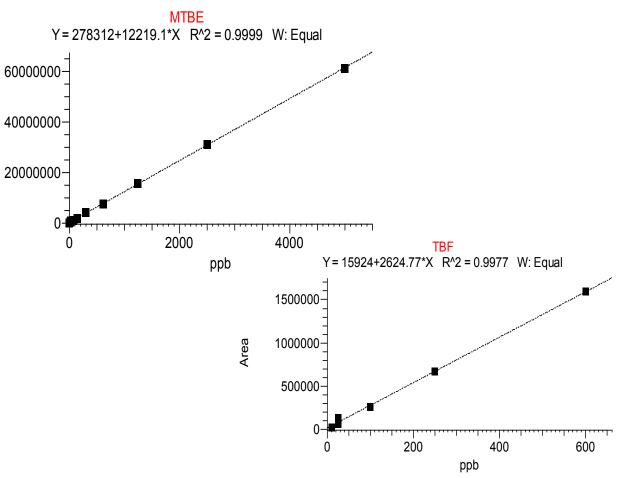

Methods....

Experimental setup

- ✓ Reactor /vessel
- ✓ Housed with two types of UV:
 - a) LP UV: 6.5x10⁻³ W/cm², 254 nm
 - b) MP UV: 5.3 x 10⁻² W/cm², 200-400 nm
- ✓ UV power unit
- ✓ Circulation pump (Hostaflon[®])

Experiment procedure

- 1. Adjust pH of the water
- 2. Spike MTBE (1ppm)
- 3. 10min circulation to homogenize
- 4. Treatment types (Chlorine alone, UV alone, UV/chlorine)
- 5. Monitoring MTBE residual and byproducts after certain time interval



Methods....

- Sample analysis
 - EPA Method 524.2 protocol was used for MTBE & byproducts analysis

Area

- Quality control
 - Ultra pure Deionized Water
 - Instrument calibration (R²>0.99)
 - Replicate experiment
 - Duplicate analysis
- Data analysis and presentation
 - MS Excel sheet 2010
 - Graphs, & tables
 - Electrical Energy per Order (EE_0)

Result and discussion

Effect of pH on the MTBE degradation with LP & MP UV/Cl₂

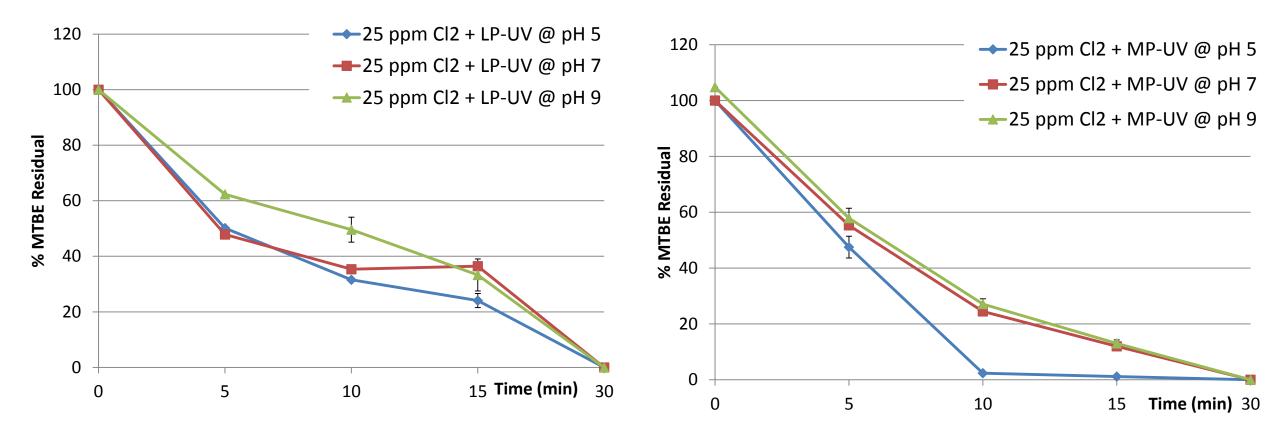


Figure 1. . Effect of pH on MTBE degradation with LP UV/Cl2

Figure 2. Effect of pH on MTBE degradation with MP UV/Cl2

Effect of pH on the MTBE degradation with LP & MP UV/Cl₂

- ✤ After 30 min >99% MTBE removal observed regardless of pH
- LP UV is more efficient for both MTBE and its byproducts removal concurrently
- The MTBE degradation could be due to:
 - UV photolysis and/or
 - Oxidation by OH radical and free chlorine
- In UV/Cl₂, OH radical is a major reason for degradation due to higher quantum yield, and less radical scavenging effect by HOCl than H₂O₂ (Rosenfeldt et al., 2013)
- OH radical attack on O-C (71%) and methyl group (29%) (Baus & Brauch, 2007)

Effect of chlorine dose on the MTBE degradation with LP & MP UV/Cl₂

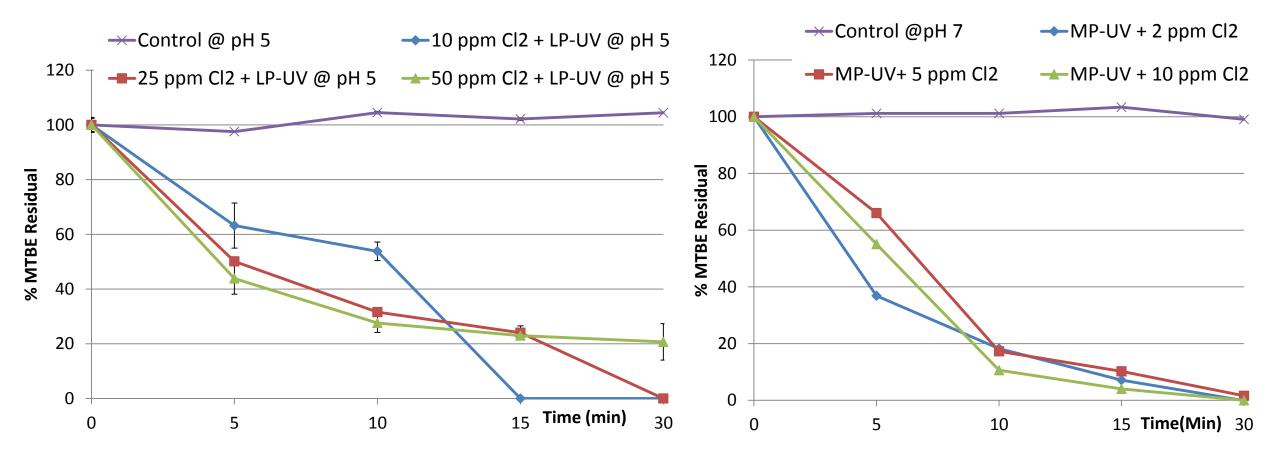


Figure 9a. Effect of Cl2 doses on MTBE degradation with LP UV/Cl2

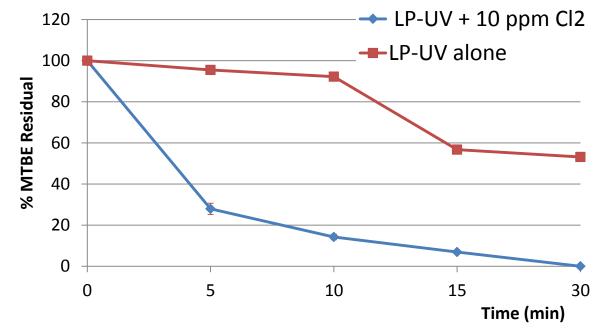
Figure 10a. Effect of Cl2 doses on MTBE degradation with MP UV/Cl2

Effect of chlorine dose on the MTBE degradation with LP & MP UV/Cl₂

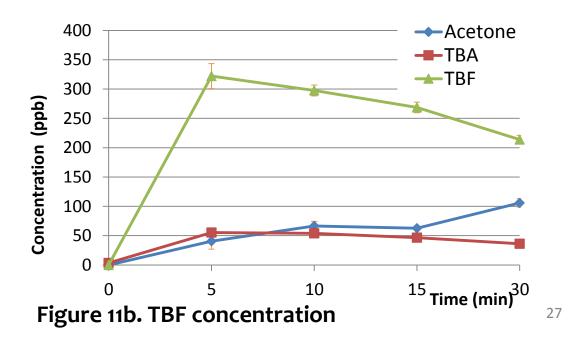
> At lower Cl₂ dose >99% MTBE remove was achieved for both UV lamps

 \succ The higher Cl₂ dose might have scavenging effect on the OH radical

➤ Other studies reported :


- \geq 80-90% removal of Methylisobreneol (MIB) by UV/Cl₂ (Rosenfeldt et al., 2013)
- >95% of MTBE removal by LP & MP UV/H₂O₂ after 20 min, 70-80% by LP&MP UV/O₃ in 30min (Tawabini 2014)

➤ The differences mainly due to the water quality differences, initial MTBE concentration and the OH radical yied


MTBE removal in groundwater by UV/Cl₂ AOP

Optimization criteria:

- ✓ Higher MTBE removal efficiency
- Lower concentrations of byproducts
- Minimum chlorine dose
- Short treatment time
- Less electrical energy
- Optimum condition obtained:
 - LP UV with 10ppm Cl_2 at pH 5, 30 min
- >99% MTBE removal in GW was achieved and superior than other AOPs

Figure 11a. MTBE degradation in groundwater with LP UV/Cl2

Comparison of MTBE removal efficiency & EE₀ of UV/Cl₂ & other AOP

AOP type	Scale of study	MTBE removal (%)	Treatment time	EEO (kWh/m3)	References
UV/TiO2	Bench scale	>95	30 min	Not reported	
UVC/CNTs	Bench scale	70	30 min	Not reported	Tawabini et al. 2013
UV/CNT-TiO2	Bench scale	>60	120 min	Not reported	
UV/O3	Bench scale	70-80	30 min	Not reported	Towahini 2014
UV/H2O2	Bench scale	>95	20 min	4.16-5.55	– Tawabini. 2014
UV/Cl ₂	Bench scale	>99	15-30	4.01-6.90	This work

- \blacktriangleright The MTBE removal obtained by UV/Cl₂ is more efficient than other AOPs
- \blacktriangleright The EE₀ determined for UV/Cl₂ is consistent with other studies (Baus & Brauch 200, Tawabini 2014)
- > The overall operation cost of UV/Cl_2 is cheaper than UV/H_2O_2 (Rosenfeldt et al., 2013)

Conclusion

>99% MTBE removal efficiency was achieved using LP UV/Cl₂ in both DI water & groundwater

Less chemical consumption, short treatment time and relatively low EE_o was attained

Recommendations

- The following recommendations are proposed:
 - Further study is need on chlorine based chemical oxidation process
 - The chlorine based advanced oxidation process in combination with other oxidant should be investigated
 - The cost estimation for UV/Cl_2 in terms of energy and operation needs further investigation at pilot scale

Acknowledgment

- I would like thank
 - Earth Sciences Department for allowing me to conduct this study in the Env'tal lab and different support during the study
 - Center for Environment and Water (CEW)

