HORIBA, Ltd.

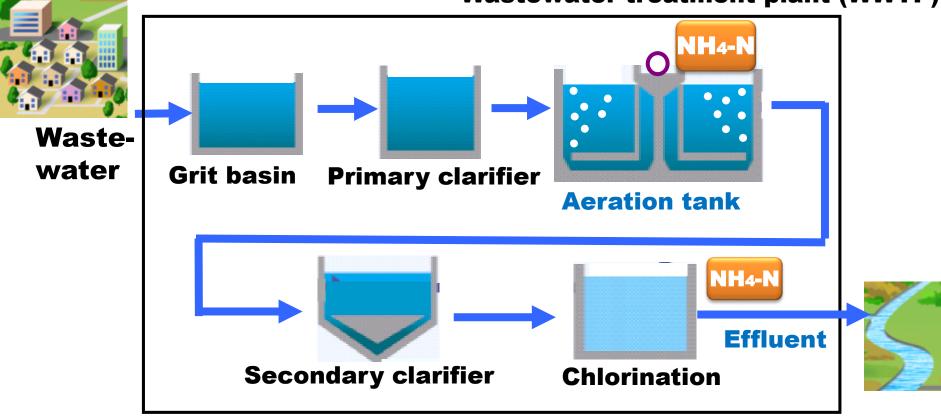
International Sales Office P&E Team

Kinta SEKIGUCHI

Date: October 2017

Outline

- Aeration control in Wastewater Treatment **Plant**
- **Ammonia Nitrogen Meter**
 - Overview
 - Features
 - Filed test (Stability and reliability)
- Applications
 - Waste water treatment
 - Drinking water treatment
- Summary

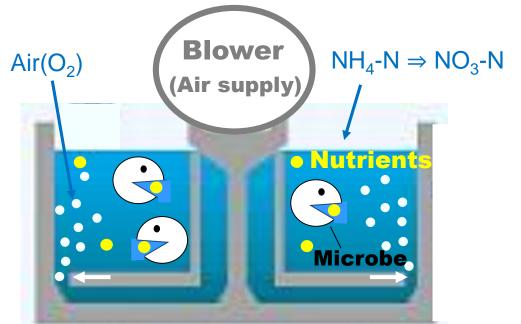

Outline

- Aeration control in Wastewater Treatment **Plant**
- Ammonia Nitrogen Meter
 - Overview
 - Features
 - Filed test (Stability and reliability)
- Applications
 - Waste water treatment
 - **Drinking water treatment**
- Summary

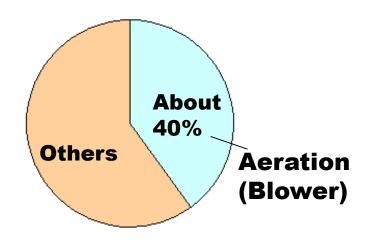
Wastewater treatment plant & NH₄-N

Wastewater treatment plant (WWTP)

Application 1 : Monitoring at aeration tank for aeration control.


(Treatment process control)

Application 2 : Monitoring of effluent for water quality check.(Regulatory requirement)


Biological treatment in aeration tank

Aeration tank: Removes nutrients(NH₄-N) by microbes

- Microbes removes nutrients.
- Air is supplied to activate microbes.
- Huge energy is consumed for the aeration.

Ammonia-based aeration control is expected to minimize energy consumption


Rate of energy consumption in WWTP

(Rough estimate based on customer inquiry survey by HORIBA)

Aeration control

Image of aeration control (based on customer hearing survey)

<u>DO-based control</u>: DO is indirect indicator of nutrient. Hence aeration with margin is necessary. Too much air when influent is cleaner.

Ammonia-based control: NH₄-N is direct indicator of nutrient. Hence the margin(extra air) can be minimized.

In Japan, some municipals have been researching that <u>10 to 30% reduction</u> of energy consumption would be possible. (Result of HORIBA's hearing survey) e.g. Electric bill of blowers in 100,000m³/day plant is 1.1MUSD/year.

(Condition: 0.5kWh/1m³/day, 0.15USD/kWh, 40% of energy is consumed by blower)

⇒ In case of 30% energy reduction, 0.3MUSD/year can be saved.

Market information

Market situation

- Some municipals in Japan try to reduce energy consumption of blower by NH₄-N monitoring.
- Some water treatment companies have been doing demonstration test of energy saving in WWTP by aeration control with NH₄-N and DO. (Government support project)

Requirement from users

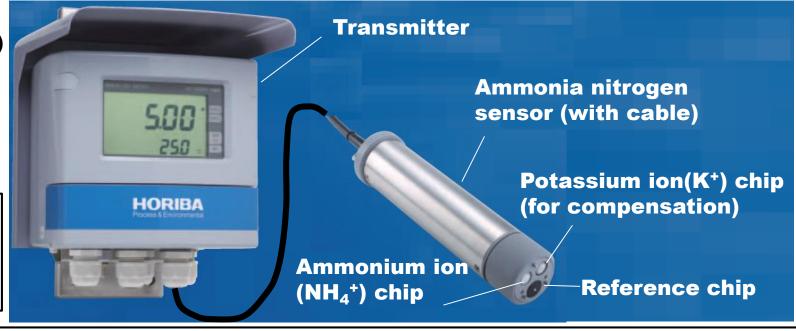
- **Sensor life** (More than 6 months is desirable)
- Stability and reliability of the measurement (Especially low range)
- **Easy maintenance (All user maintenance is desirable)**
- Quick support and enough explanation when trouble

(*Information from customer hearing survey by HORIBA)

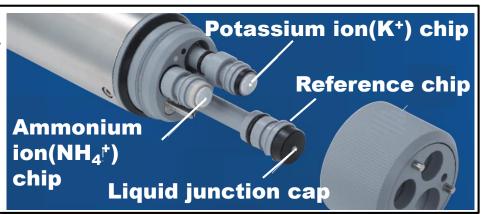
Outline

- Aeration control in Wastewater Treatment Plant
- Ammonia Nitrogen Meter
 - Overview
 - Features
 - Filed test (Stability and reliability)
- Applications
 - Waste water treatment
 - Drinking water treatment
- Summary

NH₄-N Measurement method


Method	Strength	Weakness
ISE (lon-selective electrode)	Does not need reagentDirect immersion possible	●Difficult to measure low range sample stably ●Influenced by interference factor, potassium ion and so on (Potassium compensation possible)
Gas sensitive electrode	•Less influenced by interference factor	Need reagentSampling necessary
Colorimetric	•Less influenced by interference factor	●Need reagent ●Sampling necessary

ISE is widely used and suitable for real time monitoring of aeration.


Product components

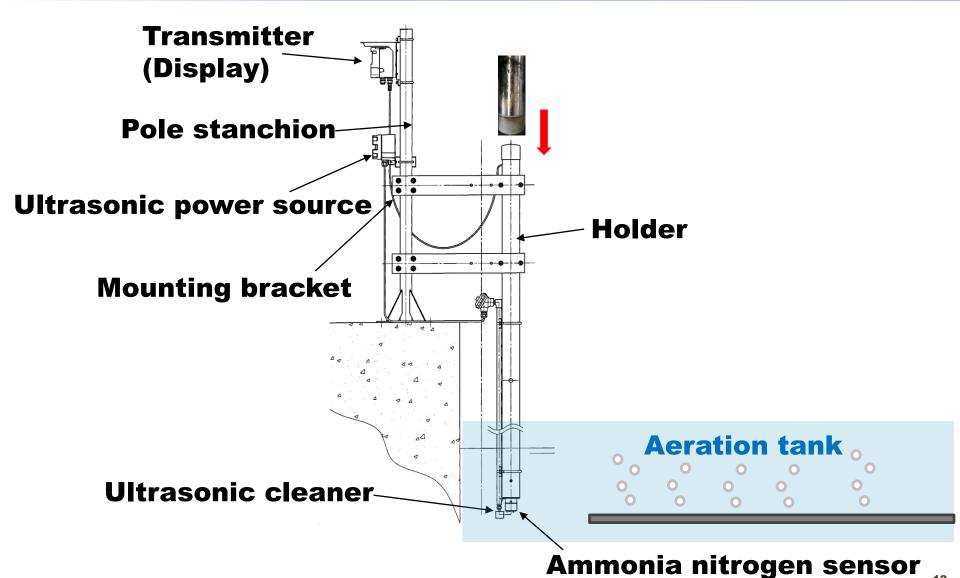
Product (HC-200NH)

Option ·Holder ·Cleaner

Consumables

Parts	Model
Transmitter	HC-200NH
Ammonia nitrogen sensor	AM-2000
Ammonium ion chip	7691
Potassium ion chip	7692
Reference chip	7211

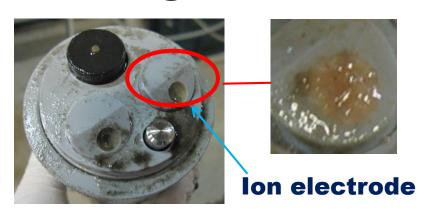
© 2017 HORIBA, Ltd. All rights reserved.


Specifications

Principal	Ion-selective electrode(ISE) method	
Range	NH ₄ -N : 0 to 1000 mg/L Temperature : 0 to 40 °C	
Resolution	NH ₄ -N: 0.01 mg/L: 0.00 to 10.00 mg/L 0.1 mg/L: 0.0 to 100.0 mg/L 01 mg/L: 0 to 1000 mg/L Temperature: 0.1 °C	
Accuracy (Repeatability)	±3%±1digit, ±0.2 mg/L±1digit whichever is greater (Standard solution)	

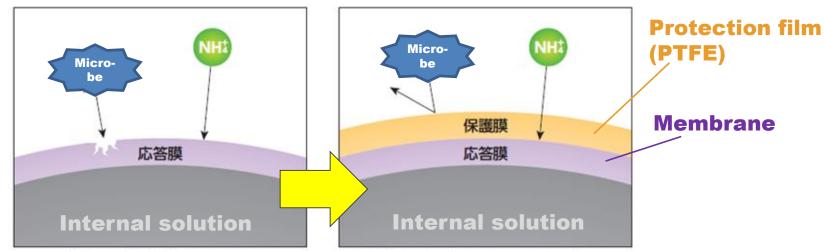
© 2017 HORIBA, Ltd. All rights reserved.

Installation example


	Customer needs	HORIBA HC-200NH Features
Measu- rement	Sensor long life (Resistance to fouling)	Feature 1 Protection film on ion selective membrane.
		Feature 2 Anti-fouling by ultrasonic cleaning
	Stability and reliability of the measurement	Feature 3 Optimized internal solution to the low-concentration sample
Mainte -nance	Easy maintenance	Feature 4 Tool-free sensor chip replacement
	Risk reduction of sudden sensor error	Feature 5 Sensor deterioration diagnosis function Patent applied Unique Tech.

© 2017 HORIBA, Ltd. All rights reserved. Explore the future

Protection film against microbes


Fouling in aeration tank

Biofilm due to microbes

- Influence on measurement
- Deterioration because microbes decompose membrane components (plasticizer)

Sensor feature

The protection film(PTFE) prevents membrane from microbes attack.

HORIBA Process & Environmental

Anti-fouling by ultrasonic cleaning

Unique Tech.

Ultrasonic cleaning

- Valid to microbial fouling
- No need air nor water supply

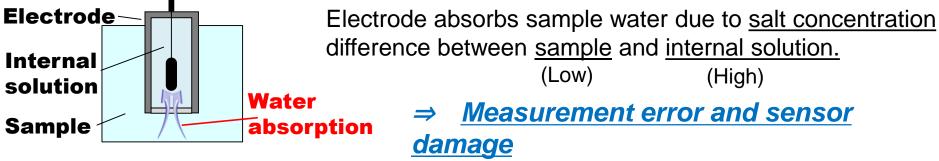
Ultrasonic wave

Image of cleaning

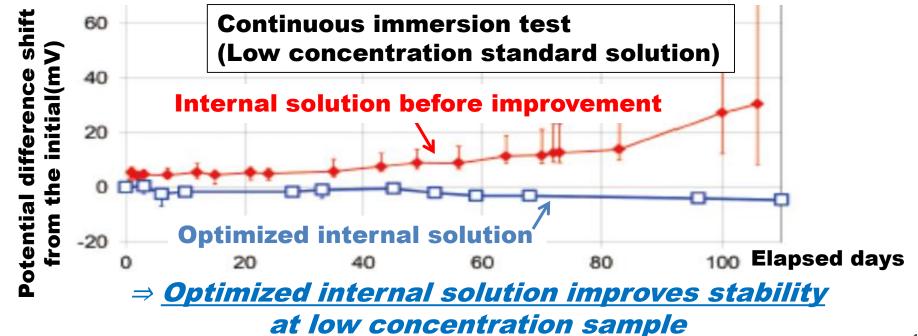
Cavitation

Application to NH₄-N meter

Optimized oscillation way and positioning enable simultaneous measurement and cleaning.


117 HORIBA, Ltd. All rights reserved.

HORIBA Process & Environmental


Stable at low concentration sample

Patent applied

Bad influence by sample water absorption

Optimized internal solution to low-concentration sample

Tool-free sensor chip replacement

Unique Tech.

Ammonium ion(NH₄+)chip (7691)

Potassium Ion(K⁺) chip (7692)

Reference Chip(7211)

Sensor cap

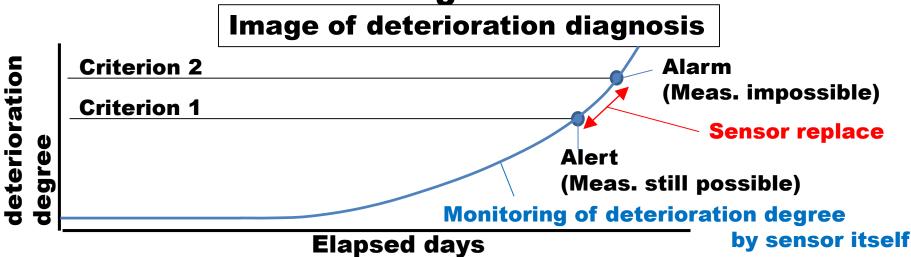
Turn the sensor cap by hand

Each electrode (NH₄+, K+, Ref) can be replaced without tools. (No need for manufacturer maintenance)

HORIBA Explore the future

Sensor deterioration diagnosis function

Deterioration progress due to fouling


Patent applied

Unique Tech.

Risk of sudden sensor error

Sensor deterioration diagnosis

⇒Deterioration diagnosis decreases the risk of sudden sensor error

HORIBA

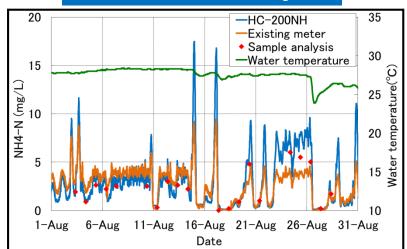
Field test example

Cooperation

Joint research with Bureau of Sewerage, Tokyo Metropolitan Government

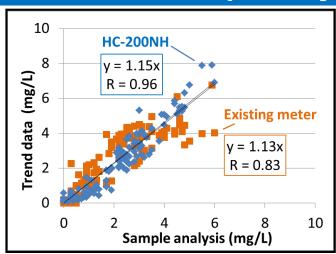
Test condition

Place: At an aeration tank in a wastewater treatment plant in Tokyo


Period: May to November 2015 (6 months)

Sensor life target: More than 6 months

Reliability target: Correlation with manual analysis R>0.9


Maintenance period: Once a month (Cleaning, calibration)

Trend data example

Measurement followed sample analysis for 6 month. (Sensor life target is achieved)

Correlation with sample analysis

Result : R=0.96(target : R>0.9) (Reliability target is achieved)

HORIBA

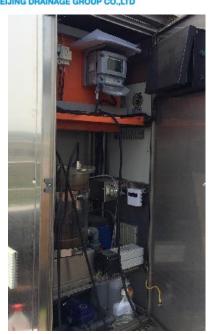
Outline

- Aeration control in Wastewater Treatment Plant
- Ammonia Nitrogen Meter
 - Overview
 - Features
 - Filed test (Stability and reliability)
- Applications
 - Waste water treatment
 - Drinking water treatment
- Summary

HORIBA

Wastewater treatment

Sewage and factory waste water


Semi-con fab. (Test installation)

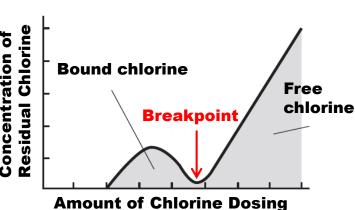
Tokyo Metropolitan Government (Joint research)

Wastewater treatment R&D center 北京排水

Wastewater treatment plant

More and more facilities trying ammonia-based aeration control, especially in big city.

Explore the future



Drinking water treatment(Intake Water)

- Control of chlorine dose in drinking water treatment plant

Chlorine dosing Chlorine dosing Coagulants (Disinfection) dosing Organic Matter (River, Lake)

"Breakpoint chlorination"

Chlorine needs to be dosed about 10 times of Ammonia

⇒ <u>Ammonia monitoring in raw water helps</u> <u>the control of chlorine dose.</u>

Outline

- Aeration control in Wastewater Treatment Plant
- Ammonia Nitrogen Meter
 - Overview
 - Features
 - Filed test (Stability and reliability)
- Applications
 - Waste water treatment
 - **Drinking water treatment**
- Summary

HORIBA Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific Explore the future

Summary

- Huge electric power consumption for blower in biological aeration tank in WWTP is one of issues to be improved. Municipals and water treatment companies in Japan are working on it.
- In order to save energy for blower, blower control by NH₄-N is effective.
- Long sensor life, stability(in low range), reliability and easy maintenance are required for Ammonia Nitrogen Meter.
- There are several applications such as waste water treatment process and drinking water treatment process.

HORIBA wishes HC-200NH(Ammonia Nitrogen Meter) helps energy saving and effective treatment

Thank you very much for your attention.

© 2017 HORIBA, Ltd. All rights reserved. Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific Explore the future

Thank you

감사합니다

Cảm ơn

ありがとうございました

Dziękuję

धन्यवाद

Grazie

Merci

谢谢

நன்ற

ขอบคุณครับ

Obrigado

Σας ευχαριστούμε

Tack ska ni ha

Большое спасибо

Danke

Gracias

Joy and Fun

Omoshiro-okashiku

