

Desalination MSF Unit Jiddah Refinery

Muhammad Waqqas Riaz 17-19/10/2017

where energy is opportunity"

© Copyright 2017, Saudi Aramco. All rights reserved.

About the presenter

Professional Chemical Engineer (PEC & SCE) MBA & CEM® Certified (AEE) 15 years of Engineering experience Present Assignment: Engineering Division, Jiddah Refinery, Saudi Aramco.

About Desalination MSF Unit Presentation

What's expected

The audience will be able to know about:

- Jiddah Refinery MSF Unit
- Operational Challenges
- Best Practices adopted
- Sharing experience

Outline

- Introduction
- Process Overview
- Major Equipment
- Common Problems
- MSF Unit Problems & Challenges
- Performance & Troubleshooting
- Benefits Realized
- Best Practices & Lesson Learned

Introduction Process Overview

أرامكو السعودية saudi aramco

Introduction

Purpose of Desalination

To convert seawater into freshwater.

Principle of MSF (Multistage-Flash Unit)

Evaporation at a temperature higher than the saturation temperature is referred to as *Flash Evaporation*.

Introduction

Jeddah Refinery Desalination

- Own seawater pump house supply
- two units (MSF & MED)
- Used for Boilers, Process, Potable, Domestic Users

MSF Unit Design

- Capacity = $5040 \text{ m}^3/\text{day}$
- Steam Consumption = 26 T/h (1.1 bar saturated steam)
- Water Quality < 10 μ S/cm

Process Overview

Process Overview

Simple Process Diagram

Major Equipment

أرامكو السعودية saudi aramco

Major Equipment

Common Problems

أرامكو السعودية saudi aramco

Common Problems

- Poor Vacuum
 - Air leaks in Evaporator Shell, deaerator, vent/ejecter condenser
 - Low steam pressure
 - Plugging of ejector nozzles
 - Low cooling water flow
- Low Distillate Production
 - Low brine recirculating flow
 - Poor Vacuum in stages
 - Scaling in brine heater and Evaporator tubes
- Impure Distillate
 - Brine level
 - Foaming in stages
 - Demister improper setting
 - Impure condensate return

MSF Unit Problems & Challenges Jiddah Refinery

أرامكو السعودية saudi aramco

MSF Unit Problems & Challenges Major Issues

- Low Brine Circulation
- Low Distillate Production
- Poor Brine Heater Performance
- Higher Distillate conductivity
- Leaks in Evaporator tubes
- Vacuum issues

MSF Unit Problems & Challenges Main Challenges

- Major Source of Distillated water
- Quality of water <10 µS/cm
- Aging of the equipment
- Pumps performance
- Leakage during operation
- Steam Balance

Challenges of MSF Unit Some Examples

Performance & Troubleshooting

أرامكو السعودية saudi aramco

Performance & Troubleshooting MSF Unit Performance

Process Parameter, Units	2/16/2017 10:36	2/16/2017 8:30	2/16/2017 13:27	2/16/2017 15:21	2/19/2017 1:30
	95% Load	85% Load	75% Load	60% Load	50% Load
Brine recirculation pumps G-001 A/B, flow, m ³ /hr	1770	1600	1510	1314	1221
SW supply pressure, Kg/cm ²	2.65	2.65	2.65	2.65	2.7
SW discharge m³/hr	1490	1488	1487	1490	1451
Make up flow, m³/hr	325	320	322	326	300
Brine heater E-002 Inlet temp °C	91.4	87.8	85	79.7	80
Brine Heater Outlet temp. °C	100.8	96.3	93	86.5	86.5
Brine blowdown flow G-002 A/B	237	352	315	324	347.5
Vent Condensate temp. °C		26	-	-	25.6
Distilled pumps G-003 A/B, m ³ /hr	200	179	160	127.5	114
Condensate flow G-004 A/B, m ³ /hr	23.5	19.4	17.9	12	11.3
Last stage vapor pressure, mmHg 🛛 🔗 🗠	-789	793	-795.5	-797	-797.9
Brine Level, %	52	52	52	49	52
Anti-foam Flow & Strokes%	60	60	60	60	60
Anti-scale (BELGARD) flow & Strokes%	60	60	60	60	60
Distillate conductivity, µS/cm	14	11.9	7.13	6.25	5.5
Evaporators Tray Level, %	45.4	41.6	51.2	48	5.2
Brine to Recovery pH	8.8	8.79	8.96	8.8	8.63
High Pressure Steam valve Pressure & Opening, $\%$	0.817	0.863	0.8		1.149
Brine heater E-002 temp °C	115		103.5		

Performance & Troubleshooting Successful Troubleshooting

- Blowdown & Brine Circulation
 - Improved with pumps performance
- Cleaning and Fixing Leaks in Evaporator tube
 - Stages 1-4 tubes hydro-jetting (90/10 Cu/Ni)
 - Stage 7 & 8 total re-tubing
- Suitable Chemicals Injection
- Brine Heater Efficiency Improvement
 - Leaks repair
 - Scale removal with special techniques
- Improved Vacuum (After Mar 2017 T&I)
 - Ejectors performance
 - Vent & Ejector condenser performance

Performance & Troubleshooting Example

Benefits Realized

Benefits Realized

- Distillate Production increased
 - 140 to 200 Tons/hr
- Brine Heater Efficiency Improved
 - Heater outlet temperature $104 \rightarrow 91^{\circ}C$
- Better Quality distillate
 - Conductivity improved from 15 \rightarrow 3 $\mu\text{S/cm}$
- Vacuum improved
 - From condenser repair 560 \rightarrow 740 mmHg

Best Practices & Lesson Learned

أرامكو السعودية soudi aramco

Lesson Learned Best Practices adopted

- Ball Cleaning System
 - Run after every 72 hrs.
- Avoid acid with better chemical replacement
 - To avoid tube leaks
 - HSE concern (Handling issues)
- Monitoring of the Unit
 - Key parameters
 - Maintain Brine circulation Ratio
- Good plan for Turnaround and Inspection
- Special techniques used to remove scaling (Aqua milling) at Brine Heater tubes
- Tubes leaks and repair should be done properly

"Science is simply common sense at its best" -Thomas Huxley

