A Field Study Evaluating the Delivery and Performance of Injected Activated Carbon for Remediation of PFOA & PFAS

R. McGregor

Environmental Technology Company

InSitu Remediation Services

Water Arabia 2017

- Perfluorinated Compounds
 - Perfluorooctane Sulfonate
 - PFOS
 - Perfluorooctanic acid
 - PFOA
- Emerging Compounds of Concern
 - Especially in USA and Europe
 - Shown to bioaccumulate
 - EU, EPA and EC have issued health advisories
 - Not known to be carcinogens
 - Fate & transport not well understood
 - A. Weber (ES&T, 2017)

- Perfluorinated Compounds
 - 6 million Americans exposed
 - Found in fire fighting foams
 - Reagents for Teflon
 - Repellants for fabrics

U.S. EPA (<u>https://www.epa.gov/dwucmr/occurrence-daunregulated-contaminant-monitoring-rule</u>)

- Tradition Treatment
 - Above ground (i.e. pump & treat)
 - Treatment trains
 - GAC
 - Common
 - Inexpensive but requires disposal or regeneration
 - Anion exchange resins
 - Expensive
 - Membrane filtration
 - Energy intensive
 - Expensive

	Kf	1/n	PS dose, mg/L: 5 ppm -> .005 ppm
PFOA	52	0.16	224
PFOS	135	0.28	163
PCE	105	0.42	445

Adsorbs well but not destroyed

Study Site

- Petroleum Hydrocarbon Spill
 - Source excavated
 - Residue PHCs in soil and groundwater
 - BTEX <300 ug/L
 - F1 < 2,000 ug/L
 - F2 < 3,500 ug/L
 - Mention of site being used as a fire fighting training site and old building used for fabric coating
 - Grabbed groundwater samples for PFOA and PFOS test
 - Detected!
 - PFOS up to 1,500 ppt
 - PFOA up to 3,300 ppt

Study Site

- Petroleum Hydrocarbon Spill
 - Geology
 - Sand to silty sand
 - Sand lens (less than 2 cm thick)
 - Hydrogeology
 - Shallow water table (~1 mbgs)
 - K~2.6 m/day
 - i ~0.06
 - $V \sim 1 \text{ m/day}$
 - Effective porosity ~0.2
 - Geochemistry
 - Reducing
 - Iron-sulphate reducing
 - High chloride concentration

- Remedial Options
 - Pump & Treat
 - Air Sparging & SVE
 - Chemical oxidation
 - Enhanced aerobic bio
 - Sulphate reduction
 - Thermal
 - Adsorption

- Why liquid activated carbon?
 - Not many demonstrated sites
 - ~120 worldwide
 - ~20 in Canada
 - Excellent injection "properties"
 - Viscosity and density of water
 - Colloidal (1-2 microns)
 - Surface area ~5,500 m²
 - Potentially quick
 - One time application
 - Less disruption
 - Cost
 - ~\$75,000

Injection Methodology

- Based on Pore Volume
 - > 0.2 PV
 - One event
- Direct Push
- Geology Specific Tools
- Multiple Locations
- Multiple Intervals
- Low Pressure
 - <25 psi
- Low Volume
 - ~100 to 200 litres/location

Injection Methodology

- Combination of adsorption-aerobic bio
 - 725 kg of concentrated liquid activated carbon
 - 440 kg of oxygen-releasing material
 - 7,800 litres of water
 - 50 locations

Injection Methodology

- 50 injection locations
 - 3 days
 - Good distribution
 - ~3 to 4 m radius of influence
 - Target zone showed good coverage
 - BTEX and PHC results
 - Non detect within 8 weeks
 - PFOS and PFOA
 - Non detect within 8 weeks
 - Maintained for over a year

Liquid Activated Carbon

Liquid Activated Carbon

53 792

- Injection
 - 3 days
 - Good distribution
 - ~3 to 4 m radius of influence
 - Target zone showed good coverage
 - BTEX and PHC results
 - Non detect within 8 weeks
 - PFOS and PFOA
 - Non detect within 8 weeks
 - Maintained for over a year

Source G. Carey, 2017

Preliminary Conclusions

- Liquid activated carbon
 - Effective over the short term for removal of PFOS and PFOA
 - Adsorbed, not destroyed
 - Long term monitoring required for:
 - Partitioning
 - Does it stay on LAC
 - Modelling (Dr Carey)
 - Biodegradation PFOA and PFOS on LAC
 - Does it degrade
 - NGA
 - CSIA

Acknowledgements

Grant Carey, President Porewater Solutions

gcarey@porewater.com

Jeremy Birnstingl, Vice President Regenesis

JBirnstingl@Regenesis.com