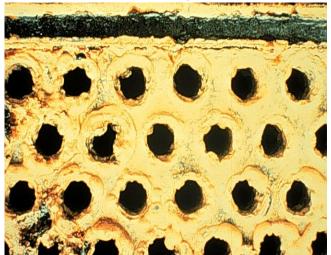


LifeShield[™] NoPhos

Sid Dunn


BHGE Global Technical Director, Water Treatment SAWEA Water Treatment Conference October 2017

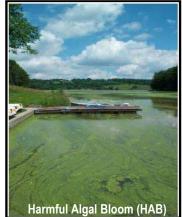
LifeShield NP Launch

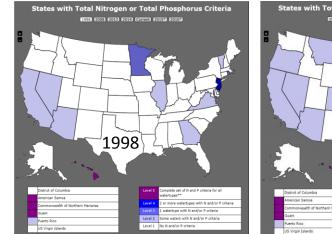
- Introduction to LifeShield
 - Why NP?
 - How did we evaluate the material
 - Standard PO4 (Neutral and Alkaline) vs. LifeShield
 - Performance of Standard PO4 program vs LifeShield
- Zero Hardness Water Evaluation
- Case History
 - Mid-West Refining Complex (coming)
- Problem Solving
 - Phosphate Treatment vs LifeShield at Elevated Skin Temperatures

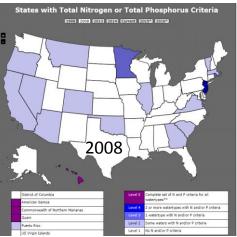
Phosphates In Water Treatment

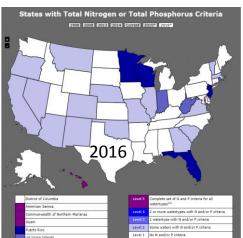
- Phosphates are used everywhere in water treatment
- Phosphates have been the primary corrosion inhibitors in cooling water treatments for over 30 years and for potable water and once through cooling water corrosion control for over 70 years.
- Phosphates are very insoluble in water that contains calcium. As the water gets hotter and hotter it is less and less soluble
- In cooling water treatments dispersants are required to extend the solubility of phosphates to allow them to function as corrosion inhibitors
- Failure to control the solubility of phosphates can result in fouling→

Phosphates In Water Treatment


- Phosphates to a lesser degree are used in boiler water treatments
- Organic phosphate compounds are often used as calcium carbonate inhibitors in cooling water programs as well as in reverse osmosis, thermal desal and boilers
- Phosphates are a required nutrient for biological aeration systems
- Phosphates are being scrutinized more and more for their environmental impact and contribution to eutrophication of receiving streams around the globe including the USA.


Phosphates Are Under Scrutiny by Environmental Groups


Environmental Sustainability


Significant changes in global regulations. Governments are imposing strict regulation on phosphorous discharge around the globe.

- US states with phosphorous regulations continues to increase.
- China and Southeast Asia have restricted phosphorous use in all new water treatment facilities.
- Removing phosphorous from chemical treatments has significant operational as well as environmental benefits

*US Environmental Protection Agency

Saudi Arabia Phosphate and Zinc Limits

Royal Commission Environmental Regulations for Jubail and Yanbu (RCER-2015)

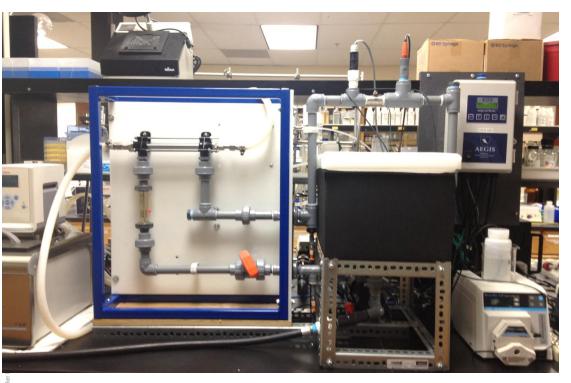
Analysis	Max	Avg
Phosphorous, as P (as PO4)	2 (6)	1 (3)
Zinc, as Zn	5	2

Performance Comparison

How did we evaluate the treatment?

- Gamry Stirred Vessel Corrosion Test
- BHI-STU; Dynamic Scale Testing Unit
- Pilot Cooling Tower

Gamry Mixed Vessel corrosion test



BHI-STU Dynamic Scale Testing Unit

Pilot Cooling Tower Testing

Dynamic Laboratory Testing: STU

- Recirculating System
- Water Sump
- Liquid to Liquid Heat Transfer
- On Line Monitoring of Heat Exchanger
 - Outlet temperature
 - Inlet temperature
 - Controlled temperature
 - Controlled pH
- 6-8 days testing
- Provides observation window to the test metal surface

Three waters were evaluated

	Test A	Test B	Test C
	High LSI	Medium LSI	Low LSI
	& TDS	& TDS	& Low TDS
			(zero Calcium)
Langelier's Saturation	2.3	1.5	-2.3
Index, LSI	Heavy scale	Moderate Scale	Severe corrosion
Skin Temperature,	50°C (120°F)	50°C (120°F)	50°C (120°F)
рН	8.3 – 8.5	8.3 – 8.5	8.3 – 8.5
Calcium as CaCO3	350	150	0
Bicarbonate, as	540	122	< 10
CaCO3			
Chlorides, as Cl	540	107	< 10
Sulfates, as SO4	500	10	0
Free Chlorine, FRC	0.5 ppm	0.5 ppm	0.5 ppm

LifeShield[™] NP Shows Excellent Inhibition Efficiency under Widely Varied Chemistries

Untreated

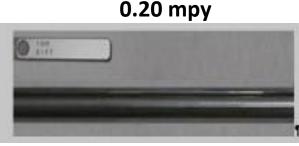
9.4 mpy

LifeShield™ NP Treated

0.39 mpy

HCO3⁼ = 540 ppm as CaCO3 Cl = 540 ppm SO4 = 500 ppm LSI: 1.2

120oF (49°C) Skin Temp.

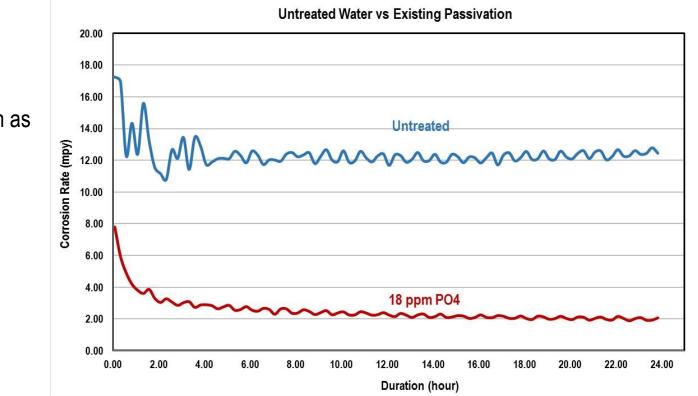

Ca = 350 ppm as CaCO3

LSI: 2.1 pH 8.4

> pH 8.4 120oF (49°C) Skin Temp. Ca = 150 ppm as CaCO3 HCO3⁼ = 122 ppm as CaCO3

8.8 mpy

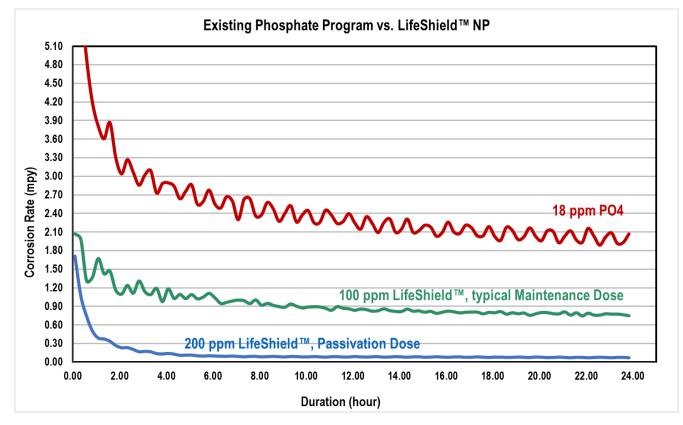
LSI: -2.3 pH 8.4 120oF (49°C) Skin Temp. Ca = 0 ppm as CaCO3 HCO3⁼ = <10ppm as CaCO3


© 2017 Bak

10

76 mpy

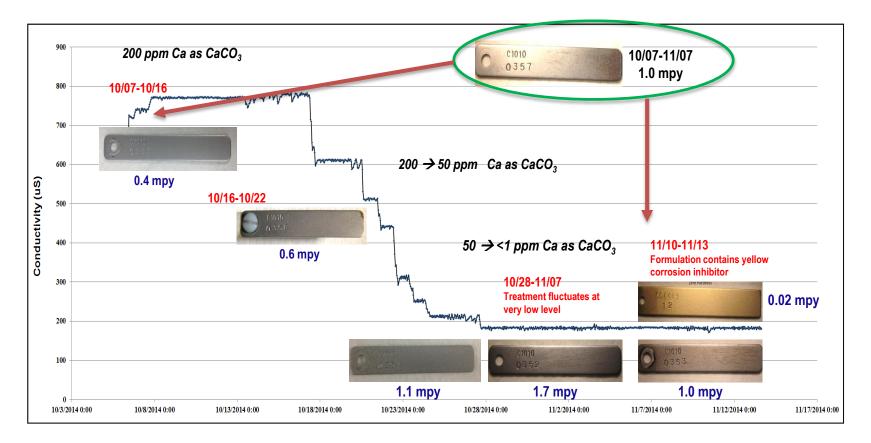
0.10 mpy


LifeShield[™] NP Compared to PO4 Treatment

A typical passivation:

- 200 ppm of Calcium as CaCO₃
- 18 ppm of o-PO₄.
 pH 7.2 to 7.5

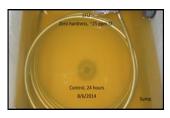
LifeShield[™] NP Passivation Evaluation


LifeShield Passivates faster and deeper than Phosphate even at normal dosages.

Zero Hardness Testing

Analysis	MU	СТ
рН	5.7	7.9
Conductivity, µmhos	<1	170
M-Alkalinity, ppm as CaCO3	<1	15
Calcium, ppm as CaCO3	0.1	2
Sodium, ppm as Na	0.01	50
Chlorides, ppm as Cl	<1	60
PO4, total as PO4	<0.02	0.3
Free Residual Chlorine, ppm as FRC		0.2-0.3

1


Pilot Testing Confirms LifeShield[™] NP Corrosion Inhibitor Performance

LifeShield[™] NP corrosion Inhibitor shows unique corrosion inhibition efficiency at 0 hardness

	Before cleaning	After cleaning
Control		O 1 1 1 1 1 1 1 1 1 1
Non-P	C1010 0169	C1010 0169 0.01 mpy

Test Metal: C1010

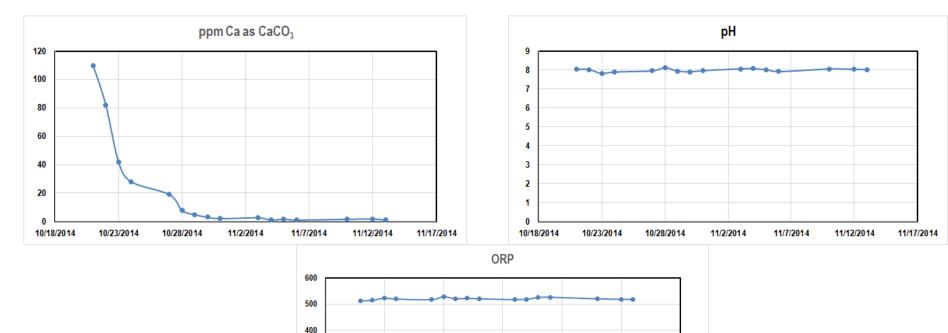
Cooling Tower Conditions during Test

300 200

100

0 10/18/2014

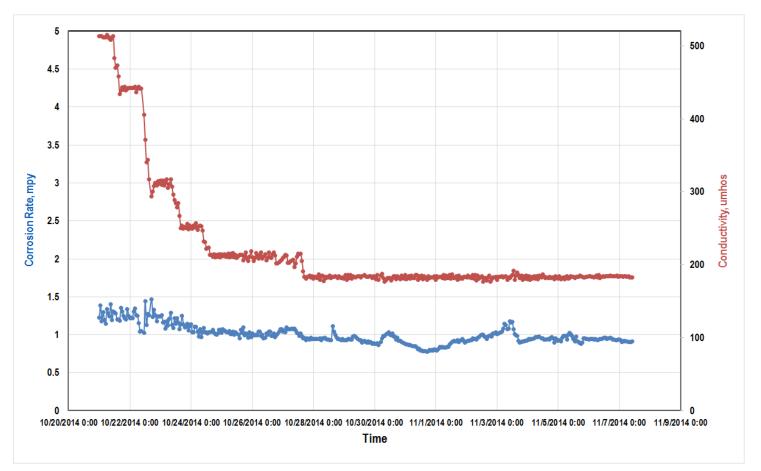
10/23/2014

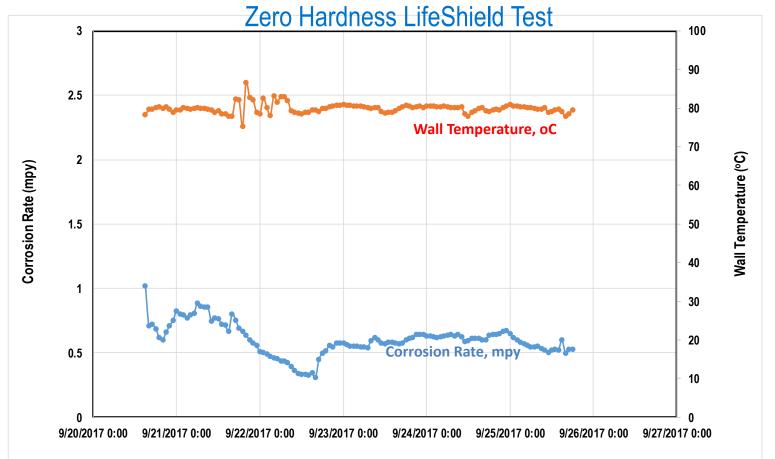

10/28/2014

11/2/2014

11/7/2014

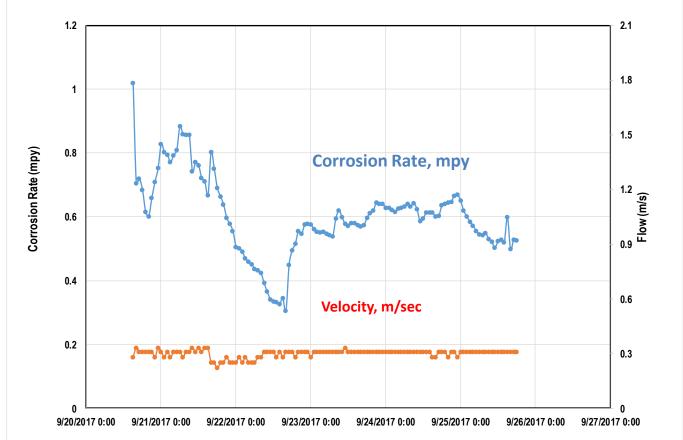
11/12/2014


11/17/2014



16

Pilot Cooling Tower Corrosion Rate Test - Zero Hardness



Elevated Skin Temperatures (80°C)

Elevated Skin Temperatures (80°C),

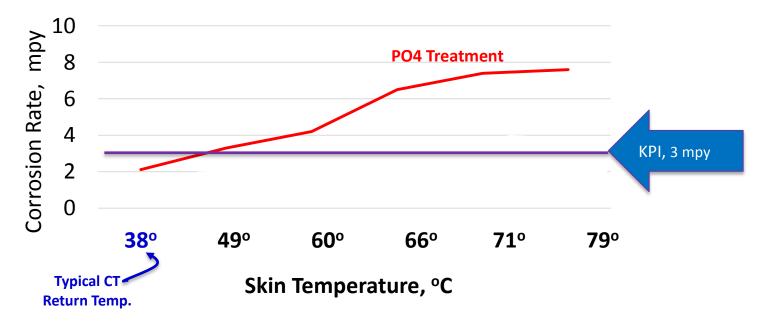
Low Velocity (0.3 m/sec) , Zero Hardness LifeShield Test

0

19

Problem Solving

Recycle Waste Water Corrosion Rate vs. Skin Temperature


Reuse Water--Title 22 Recycle Water in Los Angeles California,

Very corrosive and fouling prone water supply

Analysis	Typical MU Analysis	СТ
рН	7.0	7.6
Conductivity, µmhos	1,400	7,000
M-Alkalinity, ppm as CaCO ₃	220	100
Calcium, ppm as CaCO ₃	122	585
Magnesium, as CaCO ₃	97	450
Chlorides, ppm as Cl	266	1400
Sulfates, ppm as SO ₄	100	900
Silica, ppm as SiO ₂	17	65
Ammonia, ppm as N	42	?
COD, ppm as carbon	37	?

PO4 Program vs. LifeShield Corrosion Rates vs. Skin Temperature (°C)

Corrosion Rate LifeShield Temperature (°F) vs. MPY

Thank you

