

Membrane Bioreactors for Industrial Applications

Hiroki TOYOHARA, Junichi BABA, and Makoto ICHINOSE Water Treatment Division Toray Industries, Inc.

- 1. Introduction (Saudi Vision 2030 and Toray)
- 2. Flat Sheet MBR Membrane module
- 3. History of MBR
- 4. Case Studies in Industrial Applications
- 5. Consideration for Industrial Applications in future

1. Introduction

Signing of Shareholders' Agreement on February 19, 2014 in Tokyo in the presence of Saudi Arabia's King Salman bin Abdulaziz Al Saud and Japanese Prime Minister Shinzo Abe

Introduction

Toray's Activities toward Saudi Vision 2030

1. Local Production

Toray Membrane Middle East LLC (TMME) in Dammam, started production of RO Membrane Elements in June 2015

3. Saudization

RO Membrane Elements made in Saudi Arabia, made by Saudi Arabian

2. Exporting of High Quality Products

Exporting High Quality RO Membrane Elements to MENA Region

4. Supplying Water in Saudi Arabia

Many of desalination plants in Saudi Arabia started water production by using TMME RO Membrane Elements.

Toray Group Business Overview

As a Japanese leading chemical company founded in 1926, Toray group has been globally expanding variety of businesses, including Environmental Engineering.

- Founded: April, 1926, Shiga, Japan
- Operation: 23 countries (sales offices & production plants)
- Employee: 42,584 (as of March, 2013)
- Net Sales: 1,589 billion JPY (Fiscal Year Ended Mar 31, 2013)

Membrane Design Concepts - Advanced PVDF Membrane for a good operation of MBR

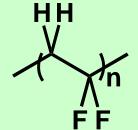
Requirements

- 1. Chemical and physical durability
- 2. High water permeability and high permeate quality
- 3. Prevention from clogging

Design Concepts

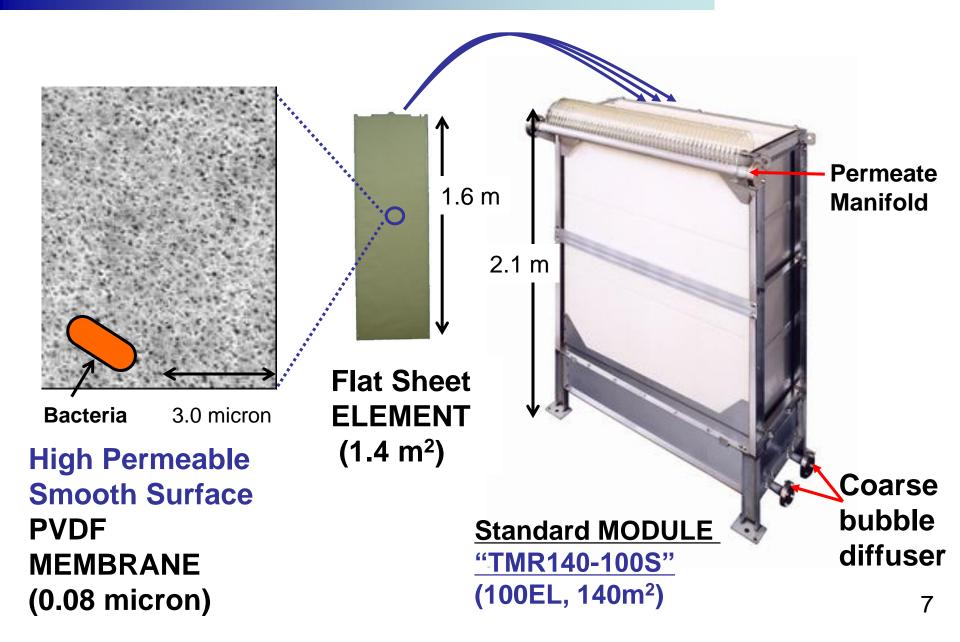
- 1. Material
 - PVDF (poly (vinylidene fluoride))
 - > good chemical resistance and high mechanical strength

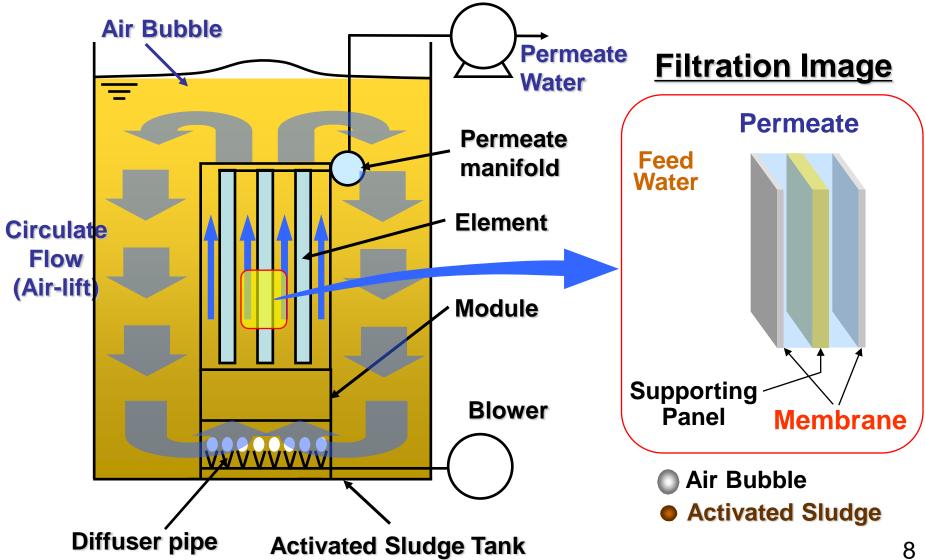
2. Pore


- Numerous number
 - > high filterability
- Small size and narrow distribution
 - > prevent from pore clogging

3. Surface morphology

- Smooth surface


> prevent from the sludge accumulation onto the membrane surface



Toray's Submerged Membrane Module "MEMBRAY"

How submerged membrane module works

MBR History

- AQUA RENAISSANCE '90
 - 1986-1990, Japan
 - 20 private companies and AIST National Labs.
 - MBR, Anaerobic reactor, Membranes evaluation
- Sewage Applications
 - 1995-2000: R&D in Europe
 - 1995 First sewage application in Japan
- MBR Boom
 - 2005-2010: Europe
 - 2005-2010: Middle East
 - 2010- : China
- Lessons Learned
 - Sewage: Limited new installation (Energy consumption / Cost / Treated Water Quality)
 - Successful Industrial Applications

Recent Findings

Category	Sub- category	Elementary attribute	CAS Sub-category or Elementary attribute score	Category score	MBR Sub-category or Elementary attribute score	Category score	
	Reliability Flexibility / Modularity		1.67 (GREEN)	1.54 (GREEN)	1.67 (GREEN)	1.41 (GREEN)	
TECHNICAL ASPECTS			1.75 (GREEN)		1.75 (GREEN)		
	Complexity		1.20 (YELLOW)		0.80 (YELLOW)		
ADMINISTRATIVE ASPECTS - NORMATIVE CONSTRAINTS		Complexity of the authorization/administrative process	2.00 (GREEN)	2.00 (GREEN)	2.00 (GREEN)	2.00 (GREEN)	
		Economic Impact	2.00 (GREEN)		1.00 (YELLOW)		
		Effluent quality	0.00 (RED)		1.00 (YELLOW)		
SOCIAL ASPECTS		Odour emissions	0.00 (RED)	0.67	0.00 (RED)	1.00	
SOCIAL ASPECTS		Skyline modification	0.00 (RED)	(YELLOW)	1.00 (YELLOW)	(YELLOW)	
		Soil consumption	0.00 (RED) 1.00 (YELL		1.00 (YELLOW)		
		Others	2.00 (GREEN)		2.00 (GREEN)		
ECONOMIC ASPECTS		Total cost under the most favourable conditions	2.00 (GREEN)	2.00	0.00 (RED)	0.50 (RED)	
		Total cost under the worst conditions	2.00 (GREEN)	(GREEN)	1.00 (YELLOW)		
ENVIRONMENTAL ASPECTS		Global warming potential	2.00 (GREEN)		2.00 (GREEN)		
		Acidification potential	2.00 (GREEN)		2.00 (GREEN)		
		Eutrophication, fresh water	2.00 (GREEN) 1.67		0.00 (RED)	1.67	
		Eutrophication, marine	1.00 (YELLOW)	(GREEN)	2.00 (GREEN)	- (GREEN)	
		Eutrophication, terrestrial	2.00 (GREEN)		2.00 (GREEN)	(ONELN)	
		Photochemical oxidant formation potential	1.00 (YELLOW)		2.00 (GREEN)		
Final score			1.58		1.32		

Table 2. Results of the techno-economic-environmental assessment of the CAS and MBR plants: scores are obtained by attributing the same weight (1) to all categories. Scores range from 0 (worst ranking) to 2 (best ranking) (Bertanza et al, 2017)

http://www.thembrsite.com/features/a-comparative-techno-economic-¹⁰ environmental-assessment-of-full-scale-cas-vs-mbr-technologies/

Experiences in Industrial MBR

➤ Food

- Cake
- Ice Cream
- Olive Oil
- Milk Processing
- Dairy
- Protein
- Potato
- Vinegar

Meat Processing

- Beef
- Chicken
- Fish
- Squid

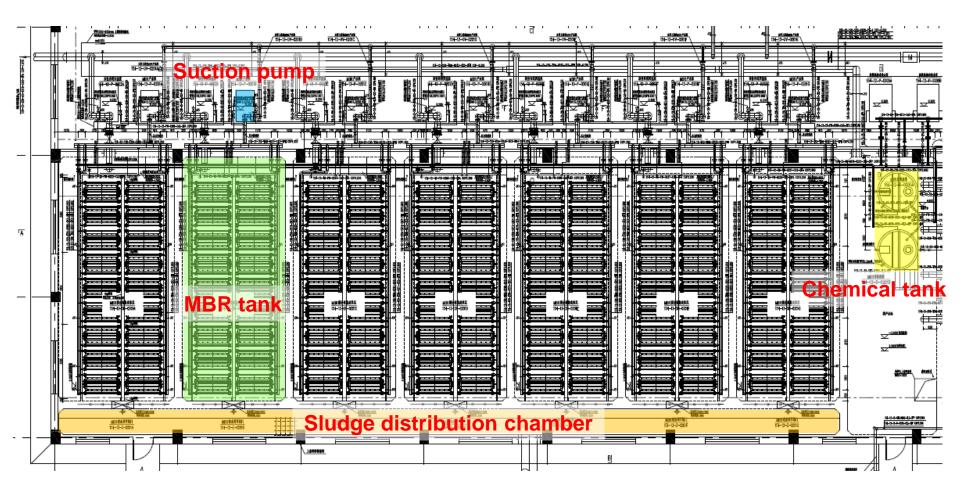
≻Beverage

- Juice
- Cola

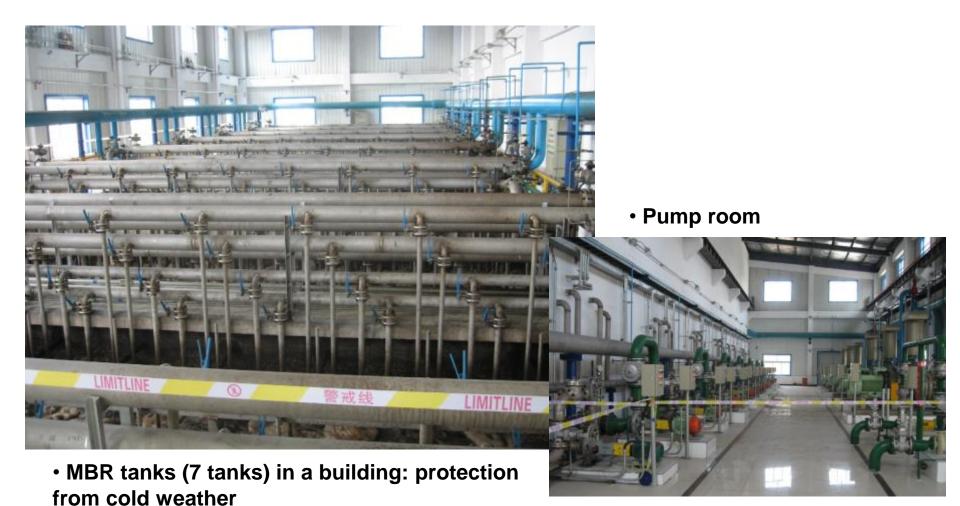
- Chemical
 - Chemical factory (PTA, DMSO, etc)
 - Cosmetic
 - Dyeing, Textile
 - Electronics
 - Liquid Crystal
 - Paper Mill
 - Petrochemical
 - Pharmaceutical
 - Photo Film
- Others
 - Automotive
 - Landfill Leachate
 - Laundry
 - Marine

Applications Consideration

	SS	Oil	Inorganic Ion	Toxic Substances	Salinity	High BOD	Nutrient balance
Food	Seed, Coat	Cake, Dairy	Са				
Meat Process- ing	Bone, Pelage, Fish scale,	Fish oil become solidified					
Beverage	Coat						
Alcohol Drinks	Chaff						
Chemical	Fiber, polymer, dispersed material, polyvinyl - alcohol	Mineral Oil	Si, Mn, Ca	Disinfecti on agent			
Marine	Toilet Paper			НСНО			
	To be removed by Pretreatment		Special attention required. (Tolerance limit, separate			To be added	
			treatment, anaerobic treatment, etc.)			12	


Guidelines on MBR Operation

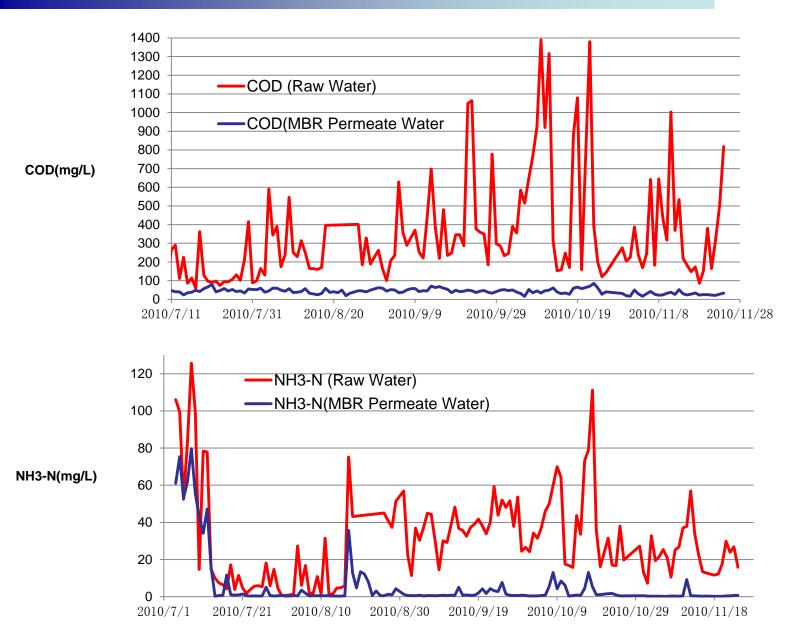
Substance		Guideline on	Guideline on	
		biological treatment	membrane module	
Oil	Biodegradable		<50mg/L at MBR inlet	
	Non-Biodegradable	<~10mg/L	Trace (zero)	
Alkali , Acid		5 <ph<9, change<="" no="" ph="" rapid="" th=""><th></th></ph<9,>		
Salts		<1% No rapid conc. change	Cl >100mg/L: SS316L is recommended for anti- corrosion	
Organic solvent, Toxic Substances	Biodegradable	Acclimated		
	Non-Biodegradable	Within the range not toxic to microorganisms.	Within the range not harmful to materials (ABS, EPDM rubber, membrane, SS)	
Inorganic Ion (Ca, Si, Mn etc)				
Anti-	Alcohol based			
foam	Silicone based		Prohibited	
Coagulant	Al, Fe			
	Cationic high- polymer coagulant		Inject and agitate well prior to MBR tank	


4-1 Chemical Factory4-2 Liquid Crystal Factory4-3 Food Processing Factory4-4 Edible Oil Factory

Place of Installation:Northern ChinaApplication:MBR Coal Chemical Factory WWDesign Capacity:9840 m³/day ("N-1 design" adopted)Installed Modules:126 x TMR140-200DIn operation since:June 2013Remark:Pilot test was conducted to assess the applicability of MBR

4-1 Chemical Factory in China - Layout

4-1 Chemical Factory in China - MBR Tank


4-1 Chemical Factory in China - MBR Tank

- Combined permeate header (upper & lower)
- Auto diffuser cleaning & guide rail system installed

4-1 Chemical Factory in China - COD and NH3-N

19

5 months pilot study

	1 st month (July)	5 th month (November)
Treated Water COD	46 mg/L	29 mg/L
Treated Water NH ₄ +-N	20 mg/L	< 1 mg/L

Activated Sludge was well acclimatized in 5 months.

Place of Installation: China

Application: MBR Liquid Crystal Factory WW **Design Capacity:** 11000 m³/day (Phase I 6500 / II 4500) 100 x TMR140-200W Installed Modules: (Phase I 60 / II 40) In operation since: November 2008 (I) March 2012 (II)

4-2 Liquid Crystal Factory

• Chemical pre-treatment (coagulation/precipitation/neutralization)

• High salinity WW – SS316L membrane module equipped with plastic manifold & diffuser

4-2 Liquid Crystal Factory – MBR Tank

End of air header

- 10 trains of 10 x TMR140-200W
- Common air diffuser cleaning
- Separated chemical piping for injection height control

COD in Raw Water: 1,750 to 2,296 mg/L
COD in MBR Treated Water: < 90 mg/L

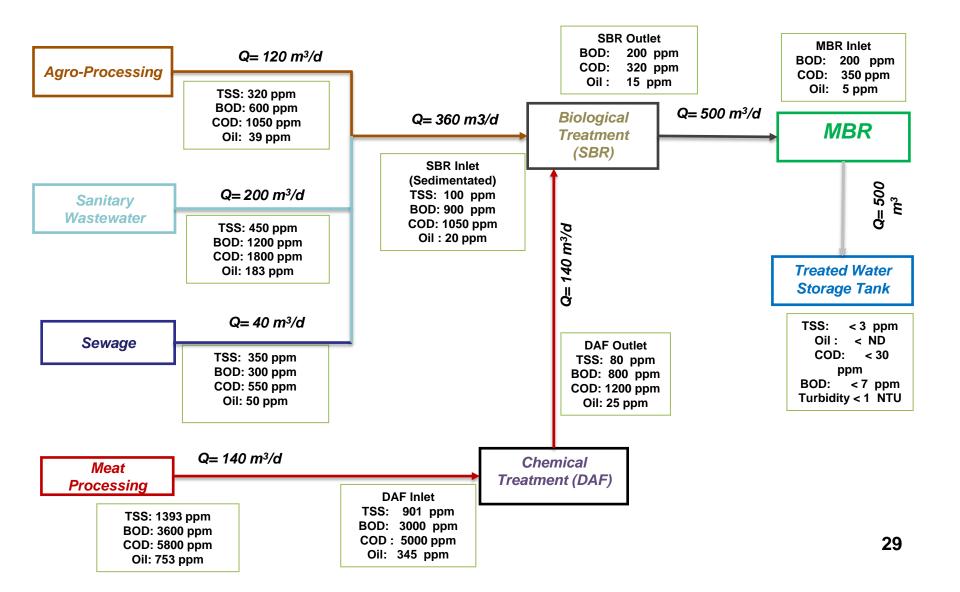
Place of Installation:	Peru
Application:	MBR Food Processing WW
Design Capacity:	850 m ³ /day
Installed Modules:	18 x TMR140-100S
In operation since:	October 2011
Remark:	Wastewater from livestock and seafood
	processing factory and restaurant

4-3 Food Processing Factory

4-3 Food Processing Factory – Process Flow Scheme

4-3 Food Processing Factory – MBR Tank

Treated water tank


1.10

- 3 MBR tanks
- Gravity filtration
- Common air diffuser cleaning

• MBR permeate: Irrigation of neighboring wildlife refuge

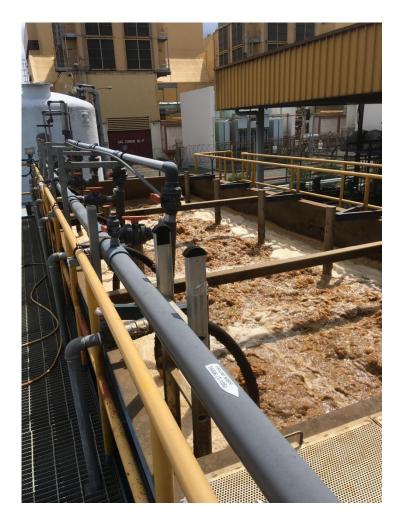
4-3 Food Processing Factory – Overall Flow Scheme

- Place of Installation: Singapore
- Application: Edible Oil Production Wastewater
- Design Capacity: 170 m³/day
- Installed Module: 8 x TMR090-100S
- In operation since:
- July, 2014

Remarks:

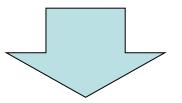
Treated water for Cooling Water (Mixed with NEWater)

4-4 Edible Oil Factory Plant Overview



4-4 Edible Oil Factory- Pretreatment (DAF) and Post treatment (UV)

4-4 Edible Oil Factory – MBR Tank

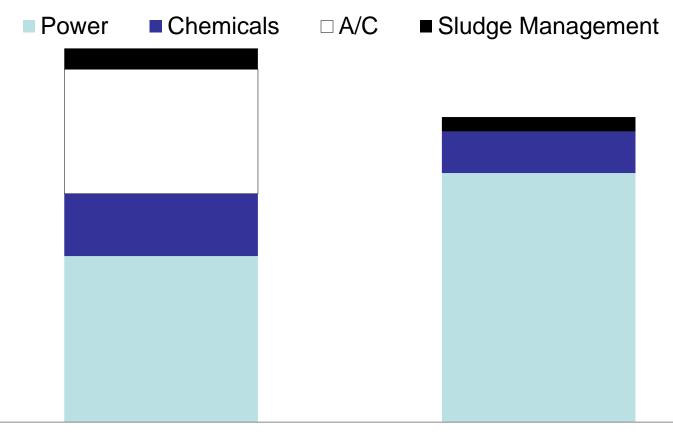


4-4 Edible Oil Factory - Flux Enhancer

MPE50: Nalco's Flux Enhancer

- Good Water Quality
- Applicable to hard degradable substrate by retention of microorganisms and diversified microbial ecosystem in MBR

- NO downstream coagulation / sedimentation?
- NO Activated Carbon?


5. MBR Key Advantages

 Very good treated water quality by a long SRT and existence of highly acclimatized microorganisms to treat hard-degradable components in the wastewater.

```
Only MBR can do this.
D > μ
D: Dilution Rate (m<sup>3</sup>/m<sup>3</sup>/Day)
μ: Specific Growth Rate (g/g/Day)
```

 Less excess sludge production due to a long SRT.

Wastewater Treatment Cost Breakdown (Conceptual)

- Microorganisms which treat hard degradable substrate have very low specific growth rate and yield.
- Substrate inhibition
- Treatability study of each stream and determination of buffer tank size.

Great Potential of MBR for Industrial Application

- Cost Saving
- Less Water Consumption by Reuse: MBR+RO

Sharing MBR Experience with You

- Good Engineering for Collection System
- Consideration on Turn Down / Shut Down

Pilot Study

Thank you very much.

www.toraywater.com