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Introduction

sustainable approach for VFAs production, this study apply circular

economy theories by using Biodiesel by-product (mainly glycerol) as an

alternative carbon source in biological phosphorus and nitrogen removal in

waste water treatment. This also in line with the Saudi “Vision 2030” of

achieving environmental sustainability, since about 50% of all waste in Saudi

Arabia is organic waste that has a great potential to be used to produce

Biodiesel.




Introduction

e Biological nutrient removal (BNR)(EBPR and Denitrification)
require a carbon source to be carried out.

* VFAs:

* Are the major carbon source in wastewater That can drive
EBPR.

* Concentration and composition significantly affect efficiency .

* Can be produced through fermentation or external substrate
fermentation.

e production of VFAs for full-scale use is cost prohibitive.

(Chen, Randall, & McCue, 2004; Shen & Zhou, 2016; Wu, Peng, Li, & Wang, 2010)
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Fermentation
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Biodiesel

e |Isafuel produced from vegetable oils or animal fats (in the
presence of a catalyst) through a transesterification reaction

* Results in glycerol as a by-product.

* Typical biodiesel waste mixtures contain 56% to 60% crude
glycerol

Refining

Treatment

Methanol recovery

R=long chain hydrocarbons

(Correa & Arbilla, 2008; Demirbas, 2008; Eguchi, Kagawa, & Okamoto, 2015; Hoekman & Robbins, 2012; Leoneti, Aragao-Leoneti, & De
Oliveira, 2012; Usta et al., 2005).




Literature Review:

Glycerol can be fermented to VFAS (vin, vu, wang, & shen, 2016).

Prefermenter production of VFAs can be optimized by
man|pUIat|ng the m|X|ng |nte nS|ty (Banister & Pretorius, 1998; Danesh & Oleszkiewicz, 1997).

Propionic acid was found to be more effective for BNR systems

(Chen et al., 2004; Shen & Zhou, 2016; Wu et al., 2010).

H, could inhibit Acetogenesis if H, exceeds 10 atm (rukuzaki, nishio

Shobayashi, & Nagai, 1990; Metcalf&Eddy, 2014).
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Objective:

Is to apply circular economy theory to optimize
activated sludge system nutrient removal using
fermented and direct addition of glycerol (biodiesel by-

product) in a pilot scale A20 experiment.




Aim of the study:

 Compare the biological nutrient removal with and without
prefermentation.

* Study the effect of glycerol adding location on the overall
biological nutrient removal.

* Study the effect of prefermenter mixing intensity on the
production of VFAs.




Sustainable Circular Economy Approach to Optimize Biological Nutrient
Removal Using Glycerol (Bio-Diesel by-product) as a Carbon Substrate




Sustainable Circular Economy Approach to Optimize Biological Nutrient

Removal Using Glycerol (Bio-Diesel by-product) as a Carbon Substrate

Materlals and Methods:
Two A,O BNR system

* Real wastewater 3.59 4.00 17.43
5.90 4.00 28.65
* SRT =10 days 17.95 8.00 21.79

* Glycerol dose 68.5 (phasel) and 78.8 (phase 2 ) mg-COD/L influent

* All comparisons were tested statistically using paired sample t-test
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Average Influent characteristics for all phases (both receive same
influent)

mg/las mg/las mg/l mg/las mg/
L L

L/day . . 25 P 8 mg/L mg/L mg/ h

Train A, 54.1 39.2 37.8 5.0 5.0 74.4 193.2 319.1 7.6 0.2
B

TrainA, 542 415 29.6 5.3 3.6 64.3 153.0 247.6 7.5 0.1
B

TrainA, 517 523 33.9 4.4 34 52.8 120.5 208.8 7.7 0.1

B
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Results and discussion: Acclimation of the biomass (preliminary

Phase)

* No experimental variable
* No glycerol or prefermenters
* Does not have sufficient carbon source to drive biological nutrient removal

e Used as an acclimation period for the biomas
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Results and discussion: Location of the Glycerol Dose (Phase 1)
* A produced 2.4 more total VFAs than prefermenter B

 EBPR functions showed a considerable improvement in phosphorus removal
after attaching the prefermenters

* SOP removal efficiency for train A and B were 92.2% and 85.6% respectively

e both trains removed 100% ammonia
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Results and discussion: Mixing Intensity (Phase 2)

PF-A (7rpm) & PF-B (50rpm)

VFA production had an inverse
correlation with mixing intensity
similar to a lab scale testing [12]

Reducing the PF mixing to 7 rpm
resulted in about 250% increase in the
VFAs production and increased the
propionic to acetic acid ratio about
50%.

Better VFA production was observed
with lower mixing intensity
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Conclusion:
* Both location of glycerol addition had beneficial effects on the
A,O with no significant difference in the effluent quality with
respect to both P and N.

* 1.4 hour anaerobic HRT was enough to ferment the glycerol
and make it available for EBPR.

* Direct addition of glycerol to the anaerobic zone in PP2,
resulted in the lowest Y, . in the whole study.

* Co-fermentation of glycerol and primary sludge resulted in a
significant VFAs increase even beyond the theoretical
estimated additional VFAs from the glycerol addition.




Sustainable Circular Economy Approach to Optimize Biological Nutrient

Removal Using Glycerol (Bio-Diesel by-product) as a Carbon Substrate

Conclusion (continued):

* Lower prefermenter mixing increased the VFAs production
significantly (especially propionic acid) but did not correlate with
superior EBPR effluent quality.

* |In general, adding prefermentation reactor with glycerol dosage at
low mixing energy should maximize the efficiency of the activated

sludge system.

* Preliminary economic screening suggest that appling this
optimization could save up to 20% of the BNR operational costs.




Questions & Comments
All welcomel
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Introduction

High nutrient concentration in municipal wastewater could cause
significant environmental problems and health risks if discharged

to receiving water without proper treatment (waish, 2012; wanielista et al., 2008; xuan,
Chang, Daranpob, & Wanielista, 2009).

Wastewater Nutrient can be removed chemically through
precipitation or biologically through biological nutrient removal
(B N R) (Metcalf&Eddy, 2014).

A%0, University of Cape Town (UCT), and 5-stage Bardenpho™

(Metcalf&Eddy, 2014).

Biological Nutrient removal is the nitrogen removal and enhanced
biological phosphorus removal (EBPR).
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Biological Nitrogen Removal (Nitrification/Denitrification)

Nitrification

Carried out by chemoautotrophic bacteria known as nitrifying
bacteria in a two step process.

2NH, +30, > 2NO, +4H" +2H,0 Nitrosomonas Europea

2NO; +20, - 2NO; Nitrobacter

NH} +20, — NO; +2H" + H,0 Net equation
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Biological Nitrogen Removal (Nitrification/Denitrification)

Denitrification

Denitrification is carried out as a dissimilation process by a broad
range of heterotrophic groups of bacteria.

NO; - NO, - NO—-> N,O—> N
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Enhanced Biological Phosphorus Removal (EBPR)
* Phosphorus removal from wastewater takes place in two main environments:

anaerobic and aerobic.

* Anaerobic:
*  PAO + Poly-P + VFAs —ATP_, Ortho-P + PHA

 Aerobic:
« Ortho-P+PHA __ATP  PAQs+ CO, + H,0
02
Anaerobic Aerobic

Cell Growth

Glycogen

Glycogen
\
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Composition of Crude Glycerol (w/w): 30% glycerol, 50% methanol, 13%
soap, 2% moisture, approximately 2-3% salts (primarily sodium and
potassium), and 2-3% other impurities
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VFAs were measured using a Shimadzu (Columbia, Maryland) gas chromatograph
equipped with a Supelco (St Louis, Missouri) Nukol column, and flame ionization
detector (FID). The injection port and the detector were maintained at 220°C.
Column initial temperature was 110°C and then ramped up at 5°C/min to reach a
final temperature of 190°C which was held for 10 minutes. The carrier gas was
helium at a flow rate of 20 cm/min, and a 10 mM volatile free acid mix was used

to develop the standard curve
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Raw Influent Prefermenters
Phase one Phase two
Phase one Phase two PF1 PE2 PF3 PF4
TN 42.7+4.5 52.3+£18 207+117  304=170 | 234+92 2854104
NO, .7 028201 £0.00 0.7240.1  0.64+04 | 066104  0.98+0.2
NH3 | 30.3+7.0 33.946.1 41.8+4.4  51.3+11 81.3+12 81.4+14
P mg- 523114 4.42x1.5 52.2+14 65.1+1.8 - -
SOP P/L 3.70+1.2 3.40+0.9 18.30£2.9  22.9+4.6 | 29.1+6.2 28.846.0
TSS 73.3£23 52.8427 3465+1130 3985+4.6 | 3790+1898 54274626
s-COD mg/L 155+35 121£23 18504423  801+237 | 2737488  1899+627
TCOD 252+58 209+71 651741310 58144637 | 751542325 8776+1055
VEA iopy.  DLSEAT #0.00 14714481  660+455 | 2875+1658 931358

- Phase one values are the average of 8 sampling events, and phase two is the average of 6 sampling events

*below detection limuit

+/- =1 standard deviation

- PF= prefermenter
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Analytical Technigues

Samples were collected from the anaerobic, anoxic, aerobic, and secondary clarifier as well
as influent and effluent reservoirs in two sample containers. One of the sample containers was
filtered immediately on site with a glass fiber filter (Whatman™, 1827-025, Pittsburgh,
Pennsylvania) before transporting to the lab. The measurements of chemical oxygen demand
(COD), e.g. TCOD and s-COD, ammonia (NH,), nitrate (NO,), nitrite (NO,), total nitrogen (TN),
total phosphorus (TP), soluble ortho-phosphate (SOP), total suspended solids (TSS), and volatile
suspended solids (VSS) were performed according to the procedures published in Standard

Methods (APHA., 2005).
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Analytical Technigues

VFAs were measured using a Shimadzu (Columbia, Maryland) gas chromatograph equipped
with a Supelco (St Louis, Missouri) Nukol column, and flame ionization detector (FID). The
injection port and the detector were maintained at 220°C. Column initial temperature was 110°C
and then ramped up at 5°C/min to reach a final temperature of 190°C which was held for 10
minutes. The carrier gas was helium at a flow rate of 20 cm/min, and a 10 mM volatile free acid
mix was used to develop the standard curve. In addition, pH and dissolved oxygen (DO) were
monitored for all reactors on a daily basis. A paired-samples t-test was conducted to compare the

results in both Pilot of each phase.



