6 th Water Arabia Conference and Exhibition, Saudi Arabia, February 11, 12 & 13, 2020

Sustainable Circular Economy Approach to Optimize Biological Nutrient Removal Using Glycerol (Bio-Diesel byproduct) as a Carbon Substrate

Dr. Eng. Sultan K. Salamah

szain@taibahu.edu.sa

12-1963

Outline

\Box Introduction

\Box Objectives

- \Box Sustainable Circular Economy Approach to Optimize Biological Nutrient Removal Using Glycerol (Bio-Diesel by-product) as a Carbon Substrate
	- Aim of the study
	- Materials and Methods
	- Results and discussion
- \Box Conclusion
- \Box References

Introduction Introduction
sustainable approach for VFAs production, this study apply circular
theories by using Biodiesel by-product (mainly glycerol) as an economy theories by using Biodiesel by-production, this study apply circular
economy theories by using Biodiesel by-product (mainly glycerol) as an
alternative carbon source in biological phosphorus and nitrogen removal in sustainable approach for VFAs production, this study apply circular
economy theories by using Biodiesel by-product (mainly glycerol) as an
alternative carbon source in biological phosphorus and nitrogen removal in
waste wa

sustainable approach for VFAs production, this study apply circular
economy theories by using Biodiesel by-product (mainly glycerol) as an
alternative carbon source in biological phosphorus and nitrogen removal in
waste wa

sustainable approach for VFAs production, this study apply circular
economy theories by using Biodiesel by-product (mainly glycerol) as an
alternative carbon source in biological phosphorus and nitrogen removal in
waste wa economy theories by using Biodiesel by-product (mainly glycerol) as an
alternative carbon source in biological phosphorus and nitrogen removal in
waste water treatment. This also in line with the Saudi "Vision 2030" of
ach

Biodiesel.

- Biological nutrient removal (BNR)(EBPR and Denitrification) require a carbon source to be carried out.
- VFAs:
	- Are the major carbon source in wastewater That can drive EBPR.
	- Concentration and composition significantly affect efficiency .
	- Can be produced through fermentation or external substrate fermentation.
	- production of VFAs for full-scale use is cost prohibitive. (Chen, Randall, & McCue, 2004; Shen & Zhou, 2016; Wu, Peng, Li, & Wang, 2010)

Fermentation

(Metcalf & Eddy, 2014)

Biodiesel

- Is a fuel produced from vegetable oils or animal fats (in the presence of a catalyst) through a transesterification reaction
- Results in glycerol as a by-product.
- Typical biodiesel waste mixtures contain 56% to 60% crude glycerol

Literature Review:

- Glycerol can be fermented to VFAs (Yin, Yu, Wang, & Shen, 2016).
- Prefermenter production of VFAs can be optimized by **Continuum Continuum Coles Col** • Glycerol can be fermented to VFAs $_{\text{Vin, Yu, Wong, & Shen, 2016}}$

• Prefermenter production of VFAs can be optimized by

manipulating the mixing intensity $_{\text{(Banister & Pretorius, 1998; Danesh & Oleszklewitz, 1997)}}$

• Propionic acid was found
-

(Chen et al., 2004; Shen & Zhou, 2016; Wu et al., 2010).

Objective:

Introduction

• Is to apply circular economy theory to optimize

• Is to apply circular economy theory to optimize

• activated sludge system nutrient removal using Introduction
ective:
Is to apply circular economy theory to optimize
activated sludge system nutrient removal using
fermented and direct addition of glycerol (biodiesel byective:
Is to apply circular economy theory to optimize
activated sludge system nutrient removal using
fermented and direct addition of glycerol (biodiesel by-
product) in a pilot scale A²O experiment. ective:
Is to apply circular economy theory to optimize
activated sludge system nutrient removal using
fermented and direct addition of glycerol (biodiesel by-
product) in a pilot scale A²O experiment.

Aim of the study:

- Compare the biological nutrient removal with and without prefermentation.
- Study the effect of glycerol adding location on the overall biological nutrient removal.
- Study the effect of prefermenter mixing intensity on the production of VFAs.

Objectives Aim of the study Materials and Conclusion Conclusion

discussion **discussion**

Sustainable Circular Economy Approach to Optimize Biological Nutrient Removal Using Glycerol (Bio-Diesel by-product) as a Carbon Substrate tainable Circular Economy Approach to Optimize B

moval Using Glycerol (Bio-Diesel by-product) as a (
 terials and Methods:

• Two A₂O BNR system

• Real wastewater

• SRT = 10 days

^{Anoxic} 8.59

^{Anoxic} 8.59

^{Ano} tainable Circular Economy Approach to Open and Methods:

• Two A₂O BNR system

• Real wastewater

• SRT = 10 days

• Glycerol dose 68.5 (phase1) and 78.8 (phase

• All comparisons were tested statistically usin

Materials and Methods:

-
- Real wastewater
-

- Glycerol dose 68.5 (phase1) and 78.8 (phase 2) mg-COD/L influent
- All comparisons were tested statistically using paired sample t-test

Average Influent characteristics for all phases (both receive same influent)

Results and discussion: Acclimation of the biomass (preliminary Phase)

- No experimental variable
- No glycerol or prefermenters
- Does not have sufficient carbon source to drive biological nutrient removal
- Used as an acclimation period for the biomas

Results and discussion: Location of the Glycerol Dose (Phase 1)

- A produced 2.4 more total VFAs than prefermenter B
- EBPR functions showed a considerable improvement in phosphorus removal after attaching the prefermenters
- SOP removal efficiency for train A and B were 92.2% and 85.6% respectively
- both trains removed 100% ammonia

Results and discussion: Mixing Intensity (Phase 2)

- PF-A (7rpm) & PF-B (50rpm)
- VFA production had an inverse correlation with mixing intensity similar to a lab scale testing [12]
- Reducing the PF mixing to 7 rpm resulted in about 250% increase in the \parallel \parallel VFAs production and increased the propionic to acetic acid ratio about propionic to acetic acid ratio about 50%.
- Better VFA production was observed with lower mixing intensity

Conclusion:

- Both location of glycerol addition had beneficial effects on the A_2 O with no significant difference in the effluent quality with respect to both P and N.
- 1.4 hour anaerobic HRT was enough to ferment the glycerol and make it available for EBPR.
- Direct addition of glycerol to the anaerobic zone in PP2, resulted in the lowest Y_{obs} in the whole study.

Introduction **Results and September 2018** Aim of the study **Results and Results and Result**

• Co-fermentation of glycerol and primary sludge resulted in a significant VFAs increase even beyond the theoretical estimated additional VFAs from the glycerol addition.

Materials and **Allen and Controller**

Objectives **Aim of the study Conclusion** Methods **Conclusion** Conclusion

discussion discussion discussion

Conclusion (continued):

- Lower prefermenter mixing increased the VFAs production significantly (especially propionic acid) but did not correlate with superior EBPR effluent quality.
- In general, adding prefermentation reactor with glycerol dosage at low mixing energy should maximize the efficiency of the activated sludge system. • Lower prefermenter mixing increased the VFAs production
significantly (especially propionic acid) but did not correlate with
superior EBPR effluent quality.
• In general, adding prefermentation reactor with glycerol dosa
- optimization could save up to 20% of the BNR operational costs.

Questions & Comments

All welcome!

REFERENCES

EFFRENCES

1. Metcalf&Eddy, Wastewater engineering: treatment and resource recovery. 2014,

New York: McGraw-Hill Education.

2. Oehmen, A., et al., *Anaerobic metabolism of propionate by*
 polyphosphate-accumulating or New York: McGraw-Hill Education.

PERFRENCES

2. Metcalf&Eddy, Wastewater engineering: treatment and resource record

2. Oehmen, A., et al., Anaerobic metabolism of propionate by

polyphosphate-accumulating organisms in enhanced biological phosphorus ren polyphosphate‐accumulating organisms in enhanced biological phosphorus removal systems. Biotechnology and Bioengineering, 2005. 91(1): p. 43-53. 3. Bodík, I., etcalf&Eddy, *Wastewater engineering: treatment and resource recovery.* 2014,

3. Oehmen, A., et al., *Angerobic metabolism of propionate by*
 polyphosphate-accumulating organisms in enhanced biological phos 1. Metcalf&Eddy, *Wastewater engineering: treatment and resource recovery.* 2014,

1. Wew York: McGraw-Hill Education.

2. Oehmen, A., et al., *Anaerobic metabolism of propionate by*
 polyphosphate-accumulating organisms

denitrification. Bioresource Technology, 2009. 100(8): p. 2452-2456.

glycerol: comparison with conventional substrates. Applied Microbiology and Biotechnology, 1997. 47(4): p. 441-446.

1. Metcalf&Eddy, Wastewater engineering: treatment and resource recovery. 2014,

New York: McGraw-Hill Education.

2. Oehmen, A., et al., Anaerobic metabolism of propionate by

polyphosphote-acccumulating organisms in enha 1. Metcalf&Eddy, Wastewater engineering: treatment and resource recovery. 2014,

New York: McGraw-Hill Education.

2. Oehmen, A., et al., Anaerobic metabolism of propionate by

polyphosphate-accumulating organisms in enhan Applied Microbiology and Biotechnology, 2000. 53(4): p. 435-440.

2. Oehmen, A., et al., *Anderobic metabolism of propionate by*

polyphosphate-accumulating organisms in enhanced biological phosphorus removal

systems. Biotechnology and Bioengineering, 2005. 91(1): p. 43-53.

3. Bodik, I engineered Propionibacterium acidipropionici. Process Biochemistry, 2009. 44(12): p. 1346- 1351. 3. Bodík, I., et al., *Biodiesel waste as source of organic carbon for municipal WWTP*
denitrification. Bioresource Technology, 2009. **100**(8): p. 2452-2456.
4. Barbirato, F., D. Chedaille, and A. Bories, *Propionic acid f*

sludge: Effect of temperature and mixing. Chemosphere, 2011. 82(4): p. 603-607.

REFERENCES

REFERENCES
8. Wu, C.-Y., et al., *Effect of carbon source on biological nitrogen and phosphorus*
removal in an anaerobic-anoxic-oxic (A2 O) process. Journal of Environmental
9. Mu'azu, N.D., et al., *Food waste manage* REFERENCES
8. Wu, C.-Y., et al., *Effect of carbon source on biological nitrogen and phosphorus*
removal in an anaerobic-anoxic-oxic (A2 O) process. Journal of Environmental
9. Mu'azu, N.D., et al., *Food waste managem* Engineering, 2010. 136(11): p. 1248-1254.

EFFRENCES
8. Wu, C.-Y., et al., *Effect of carbon source on biological nitrogen and phosphorus*
removal in an anaerobic-anoxic-oxic (A2 O) process. Journal of Environmental
9. Mu'azu, N.D., et al., *Food waste management* future approaches: a Saudi Arabian perspectives. Journal of Material Cycles and Waste Management, 2019. 21(3): p. 678-690. 8. Wu, C.-Y., et al., *Effect of carbon source on biological nitrogen and phosphorus*
removal in an anaerobic-anoxic-oxic (A2 O) process. Journal of Environmental
Engineering, 2010. 136(11): p. 1248-1254.
9. Mu'azu, N.D.,

Bioresource Technology, 2018. 250: p. 17-25.

11. Wu, C.-Y., et al., *Effect of carbon source on biological nitrogen and phosphorus*

11. The process of the process of the process of Environmental

Engineering, 2010. **136**(11): p. 1248-1254.

12. Mu'azu, N.D., et al., its applications: A case study of Saudi Arabia. Journal of Cleaner Production, 2018. 176: p. 426-438.

22. Wu, C.-Y., et al., *Effect of carbon source on biological nitrogen and phosphorus*
 removal in an anaerobic-anoxic-oxic (A2 O) process. Journal of Environmental

Engineering, 2010. **136**(11): p. 1248-1254.

9. Mu'azu biological phosphorus removal in advanced wastewater treatment. 2015, University of Central Florida: College of Engineering and Computer Science.

REFERENCES ERRENCES

ERRENCES

ERRENCES

ENCES

I., BISťáková, A., Sediáček, S., & Hutňan, M. 2009. Biodiesel waste as source of organic carbor

WWTP denitrificati

- Bernat, K., Kulikowska, D., & Godlewski, M. 2016. Crude glycerol as a carbon source at a low COD/N ratio provides efficient and stable denitritation. Desalination and Water Treatment, 57(42): 19632-19641.
- Bodík, I., Blšťáková, A., Sedláček, S., & Hutňan, M. 2009. Biodiesel waste as source of organic carbon for municipal **EXENCES**

Bernat, K., Kulikowska, D., & Godlewski, M. 2016. Crude glycerol as a carbon source at a low COD/N ratio provides

efficient and stable denitritation. *Desalination and Water Treatment*, 57(42): 19632-19641.

Bo
- Chen, Y., Randall, A. A., & McCue, T. 2004. The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid. Water Research, 38(1): 27-36.
- exploring metabolic anomalies. Water Environment Research, 87(1): 68-79.
- Correa, S. M., & Arbilla, G. 2008. Carbonyl emissions in diesel and biodiesel exhaust. **Atmospheric Environment**, 42(4): 769-775.
- Demirbas, A. 2008. Biodiesel. London, UK: Springer.
- Eguchi, S., Kagawa, S., & Okamoto, S. 2015. Environmental and economic performance of a biodiesel plant using waste cooking oil. Journal of Cleaner Production, 101: 245-250.
- Grabińska-ńoniewska, A., Słomczyński, T., & Kańska, Z. 1985. Denitrification studies with glycerol as a carbon source. Water Research, 19(12): 1471-1477. WWTP denitrification. *Bioresource Technology*, 100(8): 2452-2456.

Chen, Y., Randall, A. A., & McCue, T. 2004. The efficiency of enhanced biological phosphorus removal from real

wastex and the effected by different ratio
- removal WWTPs. Chemical Engineering Journal, 271: 114-127.
- Guerrero, J., Tayà, C., Guisasola, A., & Baeza, J. A. 2012. Glycerol as a sole carbon source for enhanced biological phosphorus removal. Water Research, 46(9): 2983-2991.
- Hoekman, S. K., & Robbins, C. 2012. Review of the effects of biodiesel on NOx emissions. Fuel Processing Technology, 96: 237-249.

REFERENCES

- Leoneti, A. B., Aragao-Leoneti, V., & De Oliveira, S. V. W. B. 2012. Glycerol as a by-product of biodiesel production in Brazil: Alternatives for the use of unrefined glycerol. Renewable Energy, 45: 138-145.
- Lu, H., & Chandran, K. 2010. Diagnosis and quantification of glycerol assimilating denitrifying bacteria in an integrated fixed-film activated sludge reactor via 13C DNA stable-isotope probing. **Environmental science &** technology, 44(23): 8943-8949. RENCES

Leoneti, A. B., Aragao-Leoneti, V., & De Oliveira, S. V. W. B. 2012. Glycerol as a by-product of biodiesel production in

Lu, H., & Chandran, K. 2010. Diagnosis and quantification of glycerol assimilating dentering ERRENCES

FERRENCES

II, A. B., Aragao-Leoneti, V., & De Oliveira, S. V. W. B. 2012. Glycerol as a by-product of biodiesel production in

Brazil: Alternatives for the use of unrefined glycerol. Renewable Energy, 45: 138-14 Leoneti, A. B., Aragao-Leoneti, V., & De Oliveira, S. V. W. B. 2012. Glycerol as a by-product of biodiesel production in

Brazil: Alternatives for the use of unrefined glycerol. **Renewable Energy**, 45: 138-145.

Lu, H., &
-
- Metcalf&Eddy. 2014. Wastewater engineering: treatment and resource recovery. New York: McGraw-Hill Education.
- Shen, N., & Zhou, Y. 2016. Enhanced biological phosphorus removal with different carbon sources. Applied microbiology and biotechnology, 100(11): 4735-4745.
- sequencing batch reactor using different organic carbon sources. Chemical Engineering Journal, 172(2-3): 994-998.
- Usta, N., Öztürk, E., Can, Ö., Conkur, E., Nas, S., Con, A., Can, A., & Topcu, M. 2005. Combustion of biodiesel fuel produced from hazelnut soapstock/waste sunflower oil mixture in a diesel engine. Energy Conversion and Management, 46(5): 741-755.
- Walsh, B. 2012. Preventing eutrophication: scientific support for dual nutrient criteria: US Environmental Protection Agency.
- Wanielista, M., Baldassari, T., Ryan, P., Rivera, B., Shah, T., & Stuart, E. 2008. Feasibility study of waste tire use in Ef&Eddy. 2014. Wastewater engineering: treatment and resource recovery. New York: McGraw-Hill Education.

N., & Zhou, Y. 2016. Enhanced biological phosphorus removal with different carbon sources. Applied

microbiology and Florida and State DEP.

REFERENCES

- Wu, C.-Y., Peng, Y.-Z., Li, X.-L., & Wang, S.-Y. 2010. Effect of carbon source on biological nitrogen and phosphorus **REFERENCES**
-Y., Peng, Y.-Z., Li, X.-L., & Wang, S.-Y. 2010. Effect of carbon source on biological nitrogen and phosphorus
removal in an anaerobic-anoxic-oxic (A2 O) process. *Journal of Environmental Engineering*, 136(1254.
- Xuan, Z., Chang, N.-B., Daranpob, A., & Wanielista, M. 2009. Initial test of a subsurface constructed wetland with green sorption media for nutrient removal in on-site wastewater treatment systems. Water Quality, Exposure and Health, 1(3-4): 159-169. Wu, C.-Y., Peng, Y.-Z., Li, X.-L., & Wang, S.-Y. 2010. Effect of carbon source on biological nitrogen and phosphorus
removal in an anaerobic-anoxic-oxic (A2 O) process. Journal of Environmental Engineering, 136(11): 1248-

- volatile fatty acids. International Journal of Hydrogen Energy, 41(46): 21713-21720.
- Yuan, Q., Sparling, R., Lagasse, P., Lee, Y. M., Taniguchi, D., & Oleszkiewicz, J. A. 2010. Enhancing biological phosphorus removal with glycerol. Water Science and Technology, 61(7): 1837-1843.
- Emanon Photography, The background picture was retrieved from http://emanonphoto.blogspot.com/2011/03/ucfknight_27.html

- High nutrient concentration in municipal wastewater could cause significant environmental problems and health risks if discharged INTOOUCTION
High nutrient concentration in municipal wastewater could cause
significant environmental problems and health risks if discharged
to receiving water without proper treatment (Walsh, 2012; Waniellsta et al., 200 Chang, Daranpob, & Wanielista, 2009).
- Wastewater Nutrient can be removed chemically through precipitation or biologically through biological nutrient removal (BNR) (Metcalf&Eddy, 2014).
- A²O, University of Cape Town (UCT), and 5-stage Bardenpho[™] (Metcalf&Eddy, 2014).
- Biological Nutrient removal is the nitrogen removal and enhanced biological phosphorus removal (EBPR).

Biological Nitrogen Removal (Nitrification/Denitrification) Nitrification

Carried out by chemoautotrophic bacteria known as nitrifying bacteria in a two step process.

Biological Nitrogen Removal (Nitrification/Denitrification)	
Nitrification	
Carried out by chemoautotrophic bacteria known as nitrifying bacteria in a two step process.	
$2NH_4^+ + 3O_2 \rightarrow 2NO_2^- + 4H^+ + 2H_2O$	Nitrosomonas Europea
$2NO_2^- + 2O_2 \rightarrow 2NO_3^-$	Nitrobacter
$NH_4^+ + 2O_2 \rightarrow NO_3^- + 2H^+ + H_2O$	Net equation

Biological Nitrogen Removal (Nitrification/Denitrification)

Denitrification

Denitrification is carried out as a dissimilation process by a broad range of heterotrophic groups of bacteria.

$$
NO_3^- \to NO_2^- \to NO \to N_2O \to N
$$

Enhanced Biological Phosphorus Removal (EBPR)

- Phosphorus removal from wastewater takes place in two main environments: anaerobic and aerobic. **PAO + POLATE ACTE ACTS AND ACTION**
 Enhanced Biological Phosphorus Removal (EBPR)

hosphorus removal from wastewater takes place in two main environ

naerobic:

• PAO + Poly-P + VFAs $\frac{ATP}{O2}$, PAOs+ CO₂ + H₂O

•
- Anaerobic:
	- $PAO + Poly-P + VFAs \xrightarrow{ATP} Ortho-P + PHA$
- Aerobic:
	- $\frac{\text{ATP}}{\text{O}2}$ PAOs+ CO₂ + H₂O $\overline{O2}$ $\overline{O2}$

Composition of Crude Glycerol (w/w): 30% glycerol, 50% methanol, 13% soap, 2% moisture, approximately 2-3% salts (primarily sodium and potassium), and 2-3% other impurities

VFAs were measured using a Shimadzu (Columbia, Maryland) gas chromatograph $\ln\text{t}$ d u c d u c d \text detector (FID). The injection port and the detector were maintained at 220°C. Column initial temperature was 110°C and then ramped up at 5°C/min to reach a final temperature of 190°C which was held for 10 minutes. The carrier gas was helium at a flow rate of 20 cm/min, and a 10 mM volatile free acid mix was used to develop the standard curve

Table 6 Wastewater influent and side-stream prefermenters effluent characteristics

- Phase one values are the average of 8 sampling events, and phase two is the average of 6 sampling events *below detection limit

 $+\prime = 1$ standard deviation

 $-$ PF= prefermenter

Introduction Analytical Techniques

Introduction
Samples were collected from the anaerobic, anoxic, aerobic, and secondary clarifier as well
fluent and effluent reservoirs in two sample containers. One of the sample containers was Analytical Techniques

Samples were collected from the anaerobic, anoxic, aerobic, and secondary clarifier as well

as influent and effluent reservoirs in two sample containers. One of the sample containers was

filtered i **Analytical Techniques**

Samples were collected from the anaerobic, anoxic, aerobic, and secondary clarifier as well

as influent and effluent reservoirs in two sample containers. One of the sample containers was

filtere **Analytical Techniques**

Samples were collected from the anaerobic, anoxic, aerobic, and secondary clarifier as well

as influent and effluent reservoirs in two sample containers. One of the sample containers was

filtere **Analytical Techniques**

Samples were collected from the anaerobic, anoxic, aerobic, and secondary clarifies

as influent and effluent reservoirs in two sample containers. One of the sample conta

filtered immediately on c, anoxic, aerobic, and secondary clarifier as well
ble containers. One of the sample containers was
fiber filter (WhatmanTM, 1827-025, Pittsburgh,
The measurements of chemical oxygen demand
), nitrate (NO₃), nitrite bic, and secondary clarifier as well

One of the sample containers was

VhatmanTM, 1827-025, Pittsburgh,

nents of chemical oxygen demand

), nitrite (NO₂), total nitrogen (TN),

uspended solids (TSS), and volatile (a) reading the sample containers was

1927-025, Pittsburgh,

1938 right show that and the sample demand

1939 right (TN),

1939, and volatile show that it and volatile show that it and volatile show that it also

1939, an Samples were collected from the anaerobic, anoxic, aerobic, and secondary clarifier as well
as influent and effluent reservoirs in two sample containers. One of the sample containers was
filtered immediately on site with samples were concected nomi inc anactoone, anoxie, actoone, and secondary etamici as were
as influent and effluent reservoirs in two sample containers. One of the sample containers was
filtered immediately on site with a filtered immediately on site with a glass fiber filter (WI
Pennsylvania) before transporting to the lab. The measureme
(COD), e.g. TCOD and s-COD, ammonia (NH₃), nitrate (NO₃),
total phosphorus (TP), soluble ortho-pho

Introduction Analytical Techniques

COLO MARK WEAS WEAT THE MARK WEAT THE WEAT THE WEAT THE UP AT THE UP AT Analytical Techniques
VFAs were measured using a Shimadzu (Columbia, Maryland) gas chromatograph equipped
with a Supelco (St Louis, Missouri) Nukol column, and flame ionization detector (FID). The
injection port and the de Interact *Hechniques*

VFAs were measured using a Shimadzu (Columbia, Maryland) gas chromatograph equipped

with a Supelco (St Louis, Missouri) Nukol column, and flame ionization detector (FID). The

injection port and the Analytical Techniques

VFAs were measured using a Shimadzu (Columbia, Maryland) gas chromatograph equipped

with a Supelco (St Louis, Missouri) Nukol column, and flame ionization detector (FID). The

injection port and the Manalytical Techniques
VFAs were measured using a Shimadzu (Columbia, Maryland) gas chromatograph equipped
with a Supeleo (St Louis, Missouri) Nukol column, and flame ionization detector (FID). The
injection port and the d VFAs were measured using a Shimadzu (Columbia, Maryland) gas chromatograph equipped
with a Supeleo (St Louis, Missouri) Nukol column, and flame ionization detector (FID). The
injection port and the detector were maintained views were measured using a similadza (Columbia, Maryland) gas emoniatograph equipped
with a Supeleo (St Louis, Missouri) Nukol column, and flame ionization detector (FID). The
injection port and the detector were maintain while a superco (st Eouis, Missouri) Nukot Column, and Traine format
injection port and the detector were maintained at 220°C. Column initial
and then ramped up at 5°C/min to reach a final temperature of 190°C
minutes. The