

6th Water Arabia Conference

Vision 2030

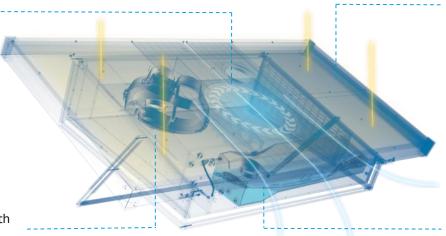
"We will seek to safeguard our environment by promoting the optimal use of our water resources and by utilizing [...] renewable water."

Challenge

To produce drinking water that:

- tastes good
- doesn't rely on single-use plastic
- Renewable energy powered

Solution: SOURCE


- water made from sunlight + air
- Premium taste & quality
- 100% off-grid
- 100% solar powered

How Does SOURCE Work?

1

Using solar PV, SOURCE takes in ambient air via fans & collects water vapor from that air onto a hygroscopic material

2

With heat from the sun,
SOURCE converts water vapor
collected into liquid water, made
pure

4

Sensors in each Hydropanel array monitor & optimize the water to maintain quality

3

The pure water is mineralized with magnesium & calcium to achieve an ideal taste profile

Water Quality

World Class Quality Standards

Balanced pH of 8 and tested against 139 parameters to meet and exceed quality standards for drinking water across the world

Always Protected

Made pure from the start and protected from contamination through integrated ozonation

Taste Profile

Calcium 20ppm Magnesium 10ppm рH

PARAMETERS	UNITS	TEST METHODS	RESULTS	Gulf Standard No. 149 / 2000 for unbottled drinking water	
#Appearance		APHA 2110	Clear	Clear	
#Odour		APHA 2150	Unobjectionable	Acceptable	
pH at 25°C		APHA 4500 - H*B	7.30	6.5 - 8.5	
Conductivity at 25°C	µS/cm	APHA 2510	141.8		
Total Suspended Solids (TSS)	mg/L	APHA 2540 - D	<5	***	
Total Dissolved Solids at 180°C (TDS)	mg/L	APHA 2540 - C	92	1000 (Max.)	
Chloride (Cl)	mg/L	APHA 4500 - CI B	30	250 (Max.)	
Sulphate (SO ₄)	mg/L	HACH 8051	<5	250 (Max.)	
Calcium (Ca)	mg/L	APHA 3500 - Ca B	14		
Magnesium (Mg)	mg/L	APHA 3500 - Mg B	7		
Total Hardness as (CaCO ₃)	mg/L	APHA 2340 - C	64	500 (Max.)	
Total Alkalinity to pH 4.5	mg/L	APHA 2320 - B	32	***	
Bicarbonate (HCO ₃)	mg/L	APHA 2320 - B	39		
#Carbonate Hardness	mg/L	APHA 2320 - B	32		
#Non Carbonate Hardness	mg/L	APHA 2320 - B	32		
		METALS(ICP-O)	ES)		
Sodium (Na)	mg/L	APHA 3120 - B	4.88	200 (Max.)	
Potassium (K)	mg/L	APHA 3120 - B	3.40		
Iron (Fe)	mg/L	APHA 3120 - B	0.01	0.3 (Max.)	
Copper (Cu)	mg/L	APHA 3120 - B	0.12	1.0 (Max.)	
Manganese (Mn)	mg/L	APHA 3120 - B	< 0.01	0.1 (Max.)	
Zinc (Zn)	mg/L	APHA 3120 - B	< 0.01	3 (Max.)	
Lead (Pb)	mg/L	APHA 3120 - B	< 0.01	0.01 (Max.)	
Chromium (Cr)	mg/L	APHA 3120 - B	< 0.01	0.05 (Max.)	

PARAMETERS	UNITS	TEST METHODS	RESULTS	*Guideline
Aerobic Colony Count	CFU/mL	CCFRA 1.1.4:2003	3.0x10 ³	500 max.#
Total Coliforms	CFU/100mL	APHA 9222 B	<1	Absent
Fecal Coliforms	CFU/100mL	APHA 9221 E.1	<1	Absent
Escherichia Coli	CFU/100mL	APHA 3222 B	<1	Absent
Enterococci	CFU/100mL	APHA 9230 C	<1	Absent

Remarks: Submitted sample meets with GSO 149/2000 specification limits for un-bottled deinking water, with respect to the parameters tested above est method variation: None

Sandeep P.K Head of Chemistry Dept., Dubai

CHEM/G/01/02/REV.03 dated 16/06/15 /MR

This report relates only to the sample tested and shall only be reproduced in full and with the written approval of AHS Laboratories - END OF REPORT -Page 1 of 1 P.O. BOX 34987

IOX 31039 (02) 5542234 (02) 5547015 P.O. BOX 16756 TEL + (04) 3472201 FAX: (04) 3472727 P.O. BOX 16758 TEL: (04) 881846

TEL: 072432328 FAX: 07-2432393

ديس

DUBAL

P.O. BOX 145133 TEL: (09) 2779543 FAX: (09) 277954

^{*} These are targeted concentrations and pH that can vary slightly but will not vary materially.

Environmental Benefits

Based on a standard 1,000 hydropanel array

8,000 metric tons

CO² offset

54 million

single use plastic bottles

51,000 m3

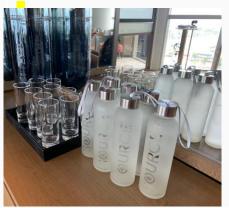
Landfill waste offset

SOURCE vs. Water Desalination Plant

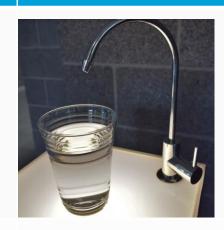
	SOURCE	Desalination plant
Tastes good	~	X
Simple to maintain	~	X
Modular and scalable		X
Zero discharge into the sea		X
100% solar powered		×
Net positive impact on environment		×

Delivery Channels

Office



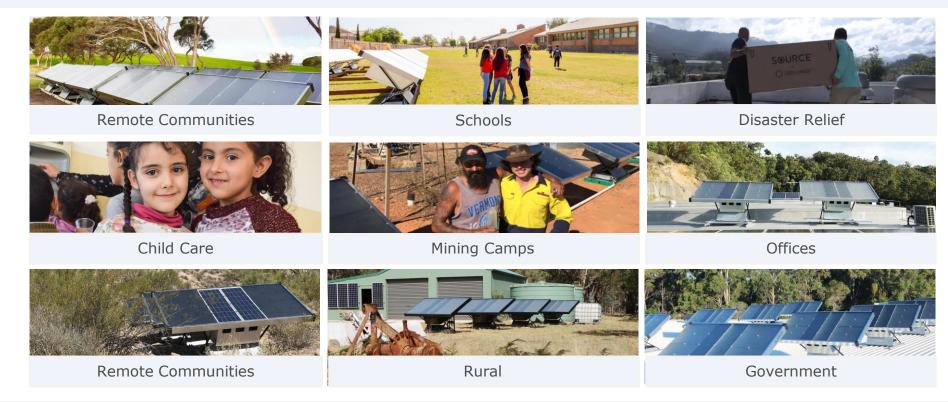
Residential


18L water jugs

Reusable plastic, less water to clean vs. 500ml bottles, easier to transport, little water wastage

Glass 500ml bottles

Convenient for site use, accessible to all workforce, no wastage associated with 1L bottles

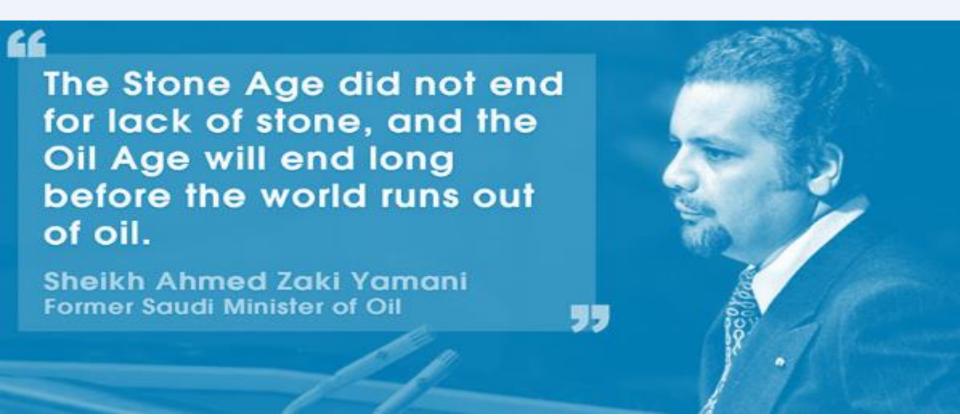

Residential rooftop panels:

Providing water independence and sustainability

Applications of SOURCE

Installed in over 40 Countries

SOURCE produces water in a variety of climates, from very humid to very dry


نيوم меом

14

Closing thought

ZERO MASS water*

