

A Bench Scale Study: Demonstrating Chloramine Disinfection Potential Using Liquid Ammonium Sulfate

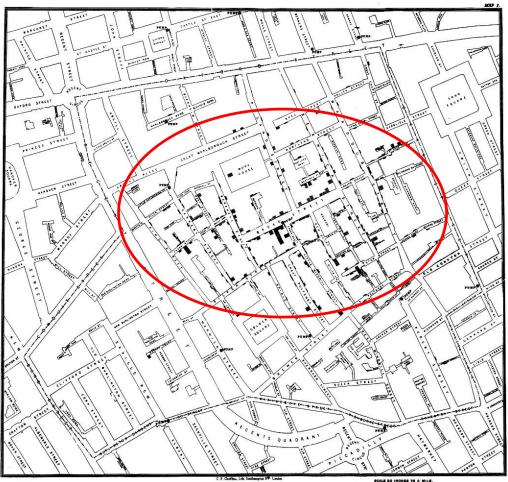
Lamees Alkhamis, P.E., MSc Civil & Environmental Engineer lamees.alkhamis@stantec.com

February 12, 2020

Agenda

- 1. Introduction to Chloramination
- 2. Bench Scale Study Introduction
- 3. Bench Scale Study Calculations and Procedures
- 4. Bench Scale Study Results and Conclusions

1. Introduction to Chloramination


1 Introduction to Chloramination

•

Disinfection

Drinking water disinfection using chlorination began in Mid 1800's to reduce waterborne diseases

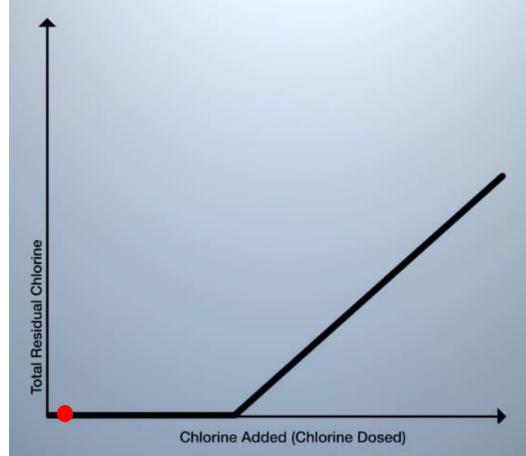
 Chlorination is the most used disinfectant in GCC countries and worldwide

John Snow's Cholera Outbreak Map of Soho London

Chlorine Chemistry

1 Introduction to Chloramination • Chlorine is used as a disinfectant either by gas or liquid form:

Chlorine Gas (Cl₂) poisonous if released in the air $Cl_2 + H_2O \diamond HOCI + H^+ + CI^-$


Sodium Hypochlorite (NaOCl) NaOCl + H_2O \diamond Na⁺ + HOCl + OH⁻

 The two species formed by chlorine in water is hypochlorous acid (HOCI: above pH 7.5) and hypochlorite ion (OCI⁻ below pH 7.5)

 $HOCI \leftrightarrow H^+ + OCI^-$

Chlorine "Breakpoint" Curve

1 Introduction to Chloramination Chlorination curve describes what happens when chlorine added to water

Source: HACH

Chloramination Definition and Forms

1 Introduction to Chloramination

- Chloramination is an alternative disinfection method, where a small quantity of ammonia is added to chlorinated water
- Chloramines are formed when free chlorine reacts with free ammonia present in the water forming:
 - Monochloramine (NH₂Cl) desired form
 - Dichloramine (NHCl₂)
 - Trichloramine (NCl₃)

Note:

- Monochloramine has high concentration and time (CT) value thus poor primary disinfectant
- However, high CT makes it ideal as a secondary disinfection in the distribution system

Chlorination Disadvantages and Advantages

Chlorination Disadvantages:

1-Chlorination has the potential to react with natural organic matter and form chlorinated disinfectant by-products (DBPs) for **surface water sources**

- θ DBPs have been shown to increase the risk of bladder cancer, among other health consequences
- θ Main DBP's include:
 - Total trihalomethanes (TTHMs)
 - Haloacetic acids (HAA5)
 - Nitrosamines: N-Nitroso-dimethylamine (NDMA)

1 Introduction to Chloramination

Chlorination Disadvantages and Advantages

1 Introduction to Chloramination

<u>Chlorination Advantages:</u>

1-It is recognized that chlorination will continue to be the most common disinfection process

 $\theta\,$ Enhanced removal of DBP precursors from raw water sources can be done by GAC and nanofiltration

1 Introduction to Chloramination

Chloramination Disadvantages and Advantages

• Chloramination disadvantages:

1- It is a poor oxidant and

2- It is not effective for taste and odor control or for oxidation of iron and manganese

<u>Chloramination advantages:</u>

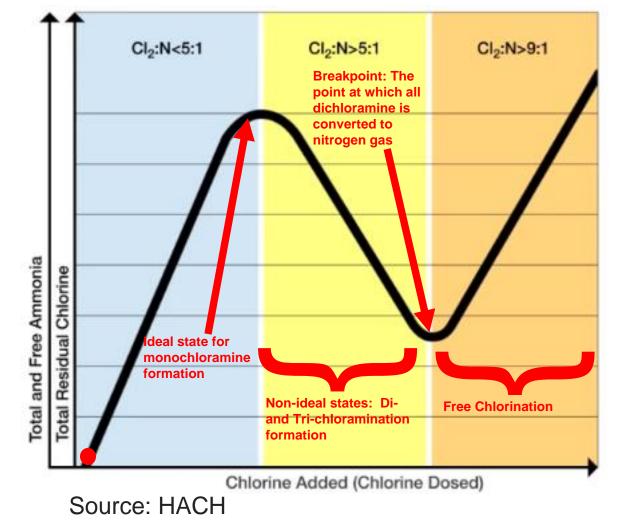
- 1- Eliminate the formation of chlorination by-products,
- 2- Maintains long residual

3- More economical than alternative disinfection methods (e.g. Ozone and UV disinfection)

Chloramination Chemistry

1 Introduction to Chloramination

- WTPs use chloramine compounds in the form of aqueous ammonia (NH₄OH, AA) and sodium hypochlorite (NaOCI, SH).
- Chloramines are frequently produced by adding ammonia to water containing free chlorine (ideal pH 8.4)


 $NH_3 + HOCI \diamond H_2O + NH_2CI$ (monochloramine)

 $NH_2CI + HOCI \diamond H_2O + NHCI_2$ (*dichloramine*)

 $NHCl_2 + HOCI \diamond H_2O + NCl_3$ (trichloramine)

Chloramination Curve

1 Introduction to Chloramination Chloramination curve describes what happens when chlorine added with ammonia in water

2. Bench Scale Study Introduction

2 Bench Scale Study Introduction

The Client "EBMUD" Drivers for the Study

- EBMUD has a CSSIP to improve safety of all chemical process in WTP
- The use of AA has an inherent risk of ammonia vapor exposure to operators and to the general public in the vicinity
- Liquid ammonium sulfate ((NH₄)₂SO₄, LAS) is identified as a AMMONIA chemical substitute to AA
- Continued use of AA for chloramination will require several major safety and code upgrades at the client's WTPs

East Bay Municipal Utility District

Substitution of LAS for AA, reduces several safety, code, reporting,
 maintenance requirements and maintenance cost

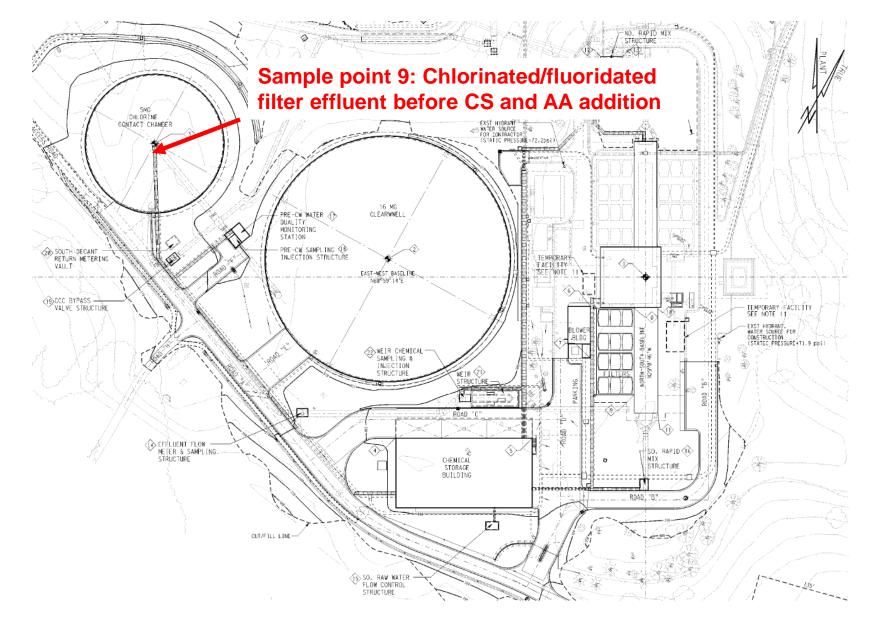
Chemical Properties: AA versus LAS

2 Bench Scale Study Introduction

Property	Aqueous Ammonia (Ammonium Hydroxide), AA	Liquid Ammonium Sulfate, LAS			
Formula	NH ₄ (OH)	$(NH_4)_2SO_4$			
Concentration	19-20%	38-40%			
Density	992.7 g/L	1,222.2 g/L			
Available Ammonia	185.7 g NH ₃ / L AA solution	121 g NH ₃ / L LAS solution			
рН	11.6	3.0-5.0			
Volatility	High vapor pressure (32.5 kPa @ 21 C) Off-gassing of ammonia vapors	Non-volatile, stable, does not off-gas (1.8 kPA)			
Odor	Strong	No odor			

Walnut Creek WTP in California, USA

2 Bench Scale Study Introduction


- Walnut Creek WTP has a treatment capacity of 115 MGD (435,322.4 m³/d)
- The water source is Pardee
 Reservoir in the Sierra
- The treatment process utilizes direct filtration – skips flocculation phase and coagulation occurs in-line prior to rapid mix

Walnut Creek WTP Process

2 Bench Scale Study Introduction

Objectives of the Bench Scale Study

2 Bench Scale Study Introduction

1. Determine and verify the dose of SH to LAS and caustic soda (CS) to LAS, in order to:

(a) achieve a chlorine to ammonia ratio (Cl₂:N) of at **least 4.7** but not **exceeding 4.9** which is the optimal ratio for monochloramine formation

(b) increase the **pH** of the effluent treated water to **9.2** for corrosion control in the distribution system

2 Bench Scale Study Introduction

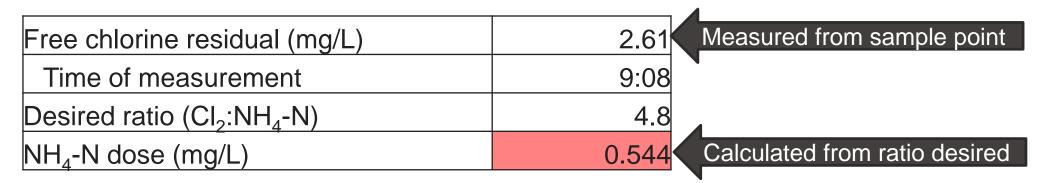
Objectives of the Bench Scale Study

- 2. Compare DBP formation for AA/SH and LAS/SH to the maximum contaminant level (MCL) allowed
- 3. Compare the rate of chloramine decay when using AA/SH vs. LAS/SH to ensure a lasting chloramine residual is maintained

3. Bench Scale Study Calculations and Procedures

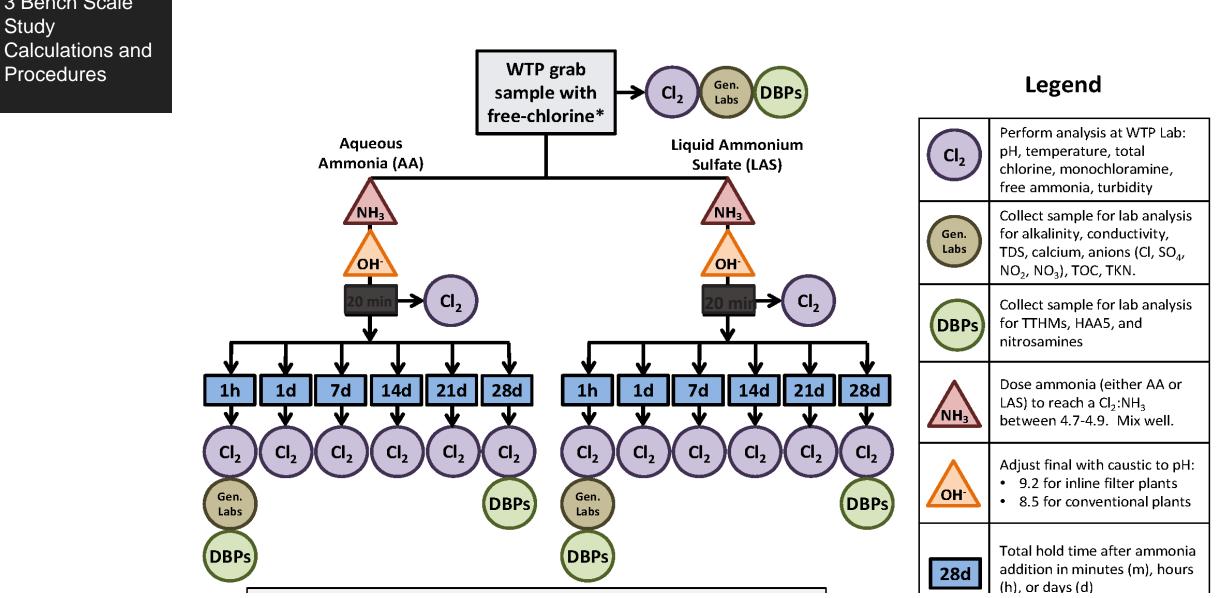
3 Bench Scale Study Calculatios and Procedures

AA, LAS and CS Concentrations


• Below summarizes stock solution concentrations used and calculated

Chemical	Units	AA		LAS	CS
Formula		NH ₄ OH	NH ₃	$(NH_4)_2SO_4$	NaOH
Molecular Weight	g/mol	35.04	17.031	132.14	40.1
% of Product			19%	40%	50%
Specific Gravity/Relative Density		0.9		1.23	1.53
Stock Concentration	mg/L		170,684	491,090	761,090
Stock Concentration – N	mg/L		140,307	104,060	N/A
Dilution (mL Stock to mL Water)			100	100	1000
Diluted Concentration	mg/L		1,403.07	1,040.60	761.09
	mg/mL		1.40	1.04	0.76

3 Bench Scale Study Calculations and Procedures


NH₄-N Dose Calculation

- The testing does of ammonia in the form of AA and LAS is determined from the free-chlorine concentration measured in the tested water to satisfy the (Cl₂:N) ratio desired
- Example of NH₄-N dose calculation:

 LAS and AA are calculated according to the NH₄-N dose in the red box

Testing Procedures

3 Bench Scale Study Procedures

3 Bench Scale Study Calculations and Procedures

Testing Procedures – Dose Determination and Data Sheet

A sample dose determination for AA and data sheet while testing is shown below:

LAS/AA + CS Dose Determination						
Working volume (L)	1	1		1		
Chemical	AA	LAS		CS (AA)		
diluted stock concentration - N mg/mL	1.40	1.04		0.76		
volume to add per L mL/L	0.39	0.52				
volume to add per 1L of sample (mL)	0.39	0.52		3.94		
		< te	< to be determined			
concentration (mg/L)	0.544	0.544by titration				
	Trial 1				Trial 2	
	mL AA	mLCS		mL AA	mL CS	
	added	added	рН	added	added	рН
	0.39	0	8.37	0.39	0	8.34
		1	8.77		3.3	9.22
AA + CS Titrations		1	9		0.2	9.23
		0.5	9.08			
		0.2	9.11			
		0.2	9.14			
		0.2	9.17			
		0.2	9.2			
		3.3	9.2		3.5	9.23
AA concentration (mg/L)	0.544			0.544		
actual CS concentration (mg/L)	2.50			2.65		

AA and LAS Concentration Determination

•

CS Concentration Determination (pH) 3 Bench Scale Study Calculations and Procedures

Testing Procedures – Photos

CS concentration determination of LAS sample

Spigots containing LAS/CS and AA/CS samples prior to lab analysis

Outside lab analysis samples

4. Bench Scale Study Results and Conclusions

4 Bench Scale Study Results and Conclusions

•

•

Test Results

- **Objective 1:** (a) achieve a Cl₂:N of at least 4.7 but not exceeding 4.9
- (b) pH of the effluent treated water to 9.2. Achieved based on Data below

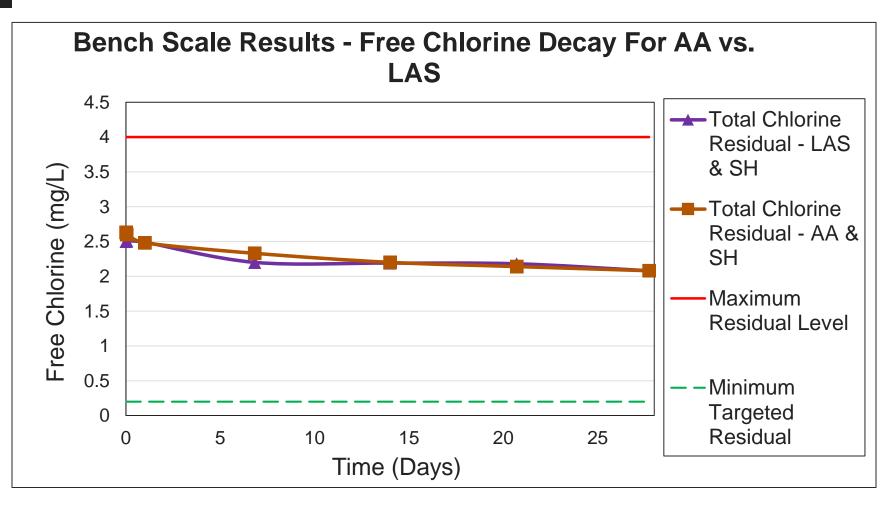
AA+CS	0m	20m	1h	1d	7d	14d	21d	28d
Date	4/11/2018	4/11/2018	4/11/2018	4/12/2018	4/18/2018	4/25/2018	5/2/2018	5/9/2018
Time	15:05	15:25	16:05	15:17	11:01	15:02	8:22	8:34
Location	WCWTP	WCWTP	WCWTP	PP	PP	PP	PP	PP
рН		9.23	9.25	9.34	9.26	9.24	9.21	9.24
Temperature (deg C)		16.5	16.8	14.9	14.4	14.8	15.2	15.2
Total Chlorine (mg/L)		2.63	2.6	2.48	2.33	2.2	2.14	2.08
Monochloramine (mg/L N)		0.56	0.57	0.51	0.471	0.446	0.434	0.402
Free ammonia as (mg/L N)		0	0	0	0.02	0	0.01	0.04
Total ammonia		0.56	0.57	0.51	0.491	0.446	0.444	0.442
Turbidity (NTU)		0.046	0.045	NA	0.053	0.04	0.043	0.039
Cl ₂ :N Ratio		4.70	4.56	4.86	4.75	4.93	4.82	4.71
LAS+CS	0m	20m	1h	1d	7d	14d	21d	28d
Date	4/11/2018	4/11/2018	4/11/2018	4/12/2018	4/18/2018	4/25/2018	5/2/2018	5/9/2018
Time	15:00	15:20	16:00	15:05	10:51	14:35	8:03	8:24
Location	WCWTP	WCWTP	WCWTP	PP	PP	PP	PP	PP
рН		9.1	9.11	9.13	9.13	9.04	9.04	9.05
Temperature (deg C)		17	17.4	15.3	14.6	15	15.2	15.2
Total Chlorine (mg/L)		2.5	2.51	2.49	2.2	2.19	2.18	2.08
Monochloramine (mg/L N)		0.53	0.54	0.503	0.474	0.447	0.44	0.401
Free ammonia as (mg/L N)		0	0	0.02	0.04	0	0.01	0.05
Total ammonia		0.53	0.54	0.523	0.514	0.447	0.45	0.451
Turbidity (NTU)		0.047	0.047	NA	0.052	0.04	0.045	0.043
Cl ₂ :N Ratio		4.72	4.65	4.76	4.28	4.90	4.84	4.61

Test Results

4 Bench Scale Study Results and Conclusions

•

Objective 2: Compare DBP formation for AA/SH and LAS/SH


Analysis	Unit	Control Sample	AA &SH 1 Hour Sample	AA &SH 28 Days Sample	LAS &SH 1 Hour Sample	LAS &SH 28 Days Sample	Federal MCL
Testing Date		4/11/2018	4/11/2018	5/9/2018	4/11/2018	5/9/2018	
Total Haloacetic Acids (HAA5)	ug/L	24	23	39	23	38	60
Nitrosamines: N-Nitroso- dimethylamine (NDMA)	ug/L	ND	ND	0.007	ND	0.008	No MCL
Total Trihalomethanes (TTHM)	ug/L	34	28	37	33	36	80

Abbreviation

ND = Nondetectable

4 Bench Scale Study Results and Conclusions

- Test Results
- Objective 3: Compare the rate of chloramine decay when using AA/SH versus LAS/SH

4 Bench Scale Study Results and Conclusions

Conclusions

- Chloramination is an effective alternative of chlorination because: 1. it reduces DBPs formed in drinking water
 - 2. It maintains a lasting free-chlorine residual in the distribution network
- Chloramination using LAS has no effect on residual decay rates or DBP formation and is safe to store and handle by WTP operators
- EBMUD decided to keep AA systems due to high initial capital cost of replacing current system
- Future studies should be conducted to observe temperature effects of using LAS versus AA for chloramination

References

- Bengtson, H. (2019). The History of Water Chlorination A Major Public Health Advance. Retrieved from Bright Hub Engineering: https://www.brighthubengineering.com/structural-engineering/77511water-chlorination-history-the-mid-1800s-through-the-early-1900s/
- G. Amy, U. o., R. Bull, B. P., G.F. Craun, G. F., & R.A. Pegram, U. E. (2004). Disinfectants and Disinfectant By-Products. World Health Organization., 27 – 109.
- X.F. Li, W. A. (Feb 20 2018). Drinking Water Disinfection Byproducts (DBPs) and Human Health Effects: Multidisciplinary Challenges and Opportunities. *Environmental Science Technology*, 1681-1689.
- Continuous Chlorination Disinfection System Operation, Maintenance & Monitoring Guidance for Small Water Systems. (2018, Feb). Retrieved from California Water Boards: <u>https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/documents/publicwatersyste</u>
- Stage 2 Disinfectants and Disinfection Byproducts Rule: A Quick Reference Guide For Schedule 4 Systems. (2006, June). Retrieved from United States Environmental Protection Agency: https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100A2D8.txt
- Nawrocki, Jacek, and Przemysław Andrzejewski. "Nitrosamines and Water." Journal of Hazardous Materials, U.S. National Library of Medicine, 15 May 2011, <u>www.ncbi.nlm.nih.gov/pubmed/21353742</u>
- <u>https://www.epa.gov/sites/production/files/2014-</u>
 <u>03/documents/ffrrofactsheet_contaminant_ndma_january2014_final.pdf</u>

References

A Bench Scale Study: Demonstrating Chloramine Disinfection Potential Using Liquid Ammonium Sulfate

Lamees Alkhamis, P.E., MSc Civil & Environmental Engineer lamees.alkhamis@stantec.com

February 12, 2020

