

Energy Efficient MBR Design: Rabigh Refinery, Saudi Arabia

Water Arabia

Wednesday, February 2, 2011

Dr. Dirk Herold Koch Membrane Systems

Power Consumption MBR

Maximize aeration tank alpha value

 Mixed liquor suspended solids (MLSS) selected based on loading/process

Efficient return activated sludge (RAS) pumping design

✓ Pump feed versus gravity feed

✓ Variable speed control

Matching membrane area with design flows

✓ Reduce peak flows

✓ Adequate flux rate to reduce membrane area

✓ MBR membrane train layout

Minimize air scour requirements

✓ Module design

✓ MBR membrane train layout

MBR Aeration Power Consumption

- α-factor: ratio of oxygen mass transfer coefficient (Kla) in wastewater to the same coefficient in clean water.
- Aeration power consumption elevated in MBR due to depressed alpha value associated with increased MLSS concentration of MBR process.
- α-factor indirectly proportional to power required to supply air for adequate oxygen transfer.

Alpha as a Function of MLSS

Relevant Aspects for MBR Energy Consumption

• Maximize aeration tank alpha value

 Mixed liquor suspended solids (MLSS) selected based on loading/process

Efficient return activated sludge (RAS) pumping design

Pump feed versus gravity feed

✓ Variable speed control

• Matching membrane area with design flows

✓ Reduce peak flows

✓ Adequate flux rate to reduce membrane area

✓ MBR membrane train layout

- Minimize air scour requirements
 - ✓ Module design
 - ✓ MBR membrane train layout

- RAS pumping in MBR typically 4x influent flow rate.
- MBR RAS important to balance MLSS between membrane tank and bioreactor.

MBR RAS Gradient

$$MLSS_m = MLSS_b * (R+1)/R$$

MLSS_m : MLSS membrane MLSS_b : MLSS bioreactor R : Recirculation factor

Selection of bioreactor MLSS impacts:

1.Alpha value 2.Recycle rate

Pumped Feed and Gravity Return

- Better control over MLSS distribution
- Pumping additional Q compared to gravity feed but usually at lower pumping head

Relevant Aspects for MBR Energy Consumption

- Maximize aeration tank alpha value
 - Mixed liquor suspended solids (MLSS) selected based on loading/process
- Efficient return activated sludge (RAS) pumping design
 - ✓ Pump feed versus gravity feed
 - ✓ Variable speed control

Matching membrane area with design flows

- ✓ Reduce peak flows
- ✓ Adequate flux rate to reduce membrane area
- MBR membrane train layout
- Minimize air scour requirements
 - ✓ Module design
 - ✓ MBR membrane train layout

Influencing Factors on Permeate Fluxes

© 2010, Koch Membrane Systems, Inc. All rights reserved.

Optimizing Membrane Area

Flow Distribution

13

Optimizing Membrane Energy

- How do we fine tune membrane operation to conserve energy?
 - ✓Number of trains in operation

✓Flux

Flux & Membrane Train Operation

MBR Train Design

Multiple train design allows

- Energy friendly
- ✓ Redundancy
- ✓Cyclical air supply
- ✓ Stand-by of membranes under low flow conditions

Relevant Aspects for MBR Energy Consumption

- Maximize aeration tank alpha value
 - Mixed liquor suspended solids (MLSS) selected based on loading/process
- Efficient return activated sludge (RAS) pumping design
 - ✓ Pump feed versus gravity feed
 - ✓ Variable speed control
- Matching membrane area with design flows
 - ✓ Reduce peak flows
 - ✓ Adequate flux rate to reduce membrane area
 - ✓ MBR membrane train layout

Minimize air scour requirements

- ✓ Module design
- ✓ MBR membrane train layout

Membrane Air Scouring

- Major power consumer with regard to membrane operation
- Critical to membrane operation/permeability
- Efficient design allows intermittent air supply and variable air delivery rate without compromising membrane permeability
- Air scour systems vary with manufacturers

Design aspects:

- Membrane module design
- Plant design

PURON® Air Scour Concept

20

Specific Instantaneous Air Flow

General Operation Modes Membrane Module Aeration

21

4 Train System Alternating Membrane Aeration

- At average hydraulic capacity, only 1 blower is operated
- Air is switched alternating between the four filtration lines
- Only at peak hydraulic capacity, 2 blowers are operated parallel
- Air is switched alternating between 2 x 2 filtration lines
- Air supply is realized depending on hydraulic capacity

25 % Aeration management during average flow conditions for a 4 train membrane filtration systems

Advantages of Intermittent Air Scour

Specific aeration rate	0.53 Nm³/m²h
Specific aeration rate (@ 50 % aeration)	0.27 Nm³/m²h
Specific aeration rate (@ 25 % aeration)	0.14 Nm³/m²h
Aeration pressure for operation	300 mbar
Overall energy consumption	0.15 – 0.09 kWh/m³

Highly energy efficient Intermittent aeration management

Example Project (4 trains): Total Energy Consumption of Membrane Filtration

Energy consumed by:

- Sludge circulation => 0,025 kWh/m³
- Permeate & Backwash pumps => 0,046 kWh/m³
- Membrane aeration => 0,128 kWh/m³

Total Membrane filtration: ≤ 0,20 kWh/m³ treated effluent

Rabigh Design Basis

Basis of Design				
Parameter	Flow	Temperature	Notes	
Average Annual Flow (AAF)	1,500 m ³ /day	15 ° C	365 Days	
Average Design Flow (ADF)	1,950 m³/day	15 ° C	365 Days with 3 Trains	
Peak Day Flow (PDF) **	1,950 m ³ /day	15 ° C	365 Days with 3 Trains	
Peak Hourly Flow (PHF) **	82 m ³ /hr	15°C	Corresponds to 1,950 m³/day	

Parameter	Influent	Effluent Limits
BOD	225 mg/L	< 10 mg/L
TSS	225 mg/L	< 5 mg/L
TKN	45 mg/L	< 3 mg/L
NH ₃	25 mg/L	< 1 mg/L
NO ₃	N/A	< 10 mg/L
Alkalinity	250 mg/L *	< 75 mg/L *
Maximum Wastewater Temperature	35 °C	
Elevation	30 m *	

MBR plant realized by: Parkson ME in cooperation with Al-Busaili

Rabigh Layout

Rabigh Layout

Start of commissioning: December 2010

Adaptation of biology Increase of influent flows

@ 2010, Koch Membrane Systems, Inc. All rights reserved.

Summary

- Minimize membrane area to optimize power consumption
- Effective management of solids
- Flexible membrane operation
- Effective air scour device
- Multiple trains allow intermittent air scour
- Bioreactor operation

Questions & Comments

Thank you for your attention!

