

Cloth Media Filter Retrofit Increases Filtration Capacity in Existing Sand Filter Basins of WWTPs in the USA

H. Lin, P.E. - Aqua-Aerobic Systems, Inc.

P. Baumann, P.E. - Aqua-Aerobic Systems, Inc.

T. Reid, P.E. – Aqua-Aerobic Systems, Inc.

Presentation Outline

- Problems With Existing Shallow Bed Traveling Bridge Filter
- AquaDiamond® Cloth Media Filter
- AquaDiamond® Retrofit
- Testing
- Conclusion

Shallow Bed Traveling Bridge Filter

- Since early 1970s
- Advanced wastewater treatment
- Removal of residual suspended solids

Operational Issues with Existing TBFs

Decline in operational efficiency

Decrease in the hydraulic loadings

Decrease in the solid loading rates

Increase in the backwash rates

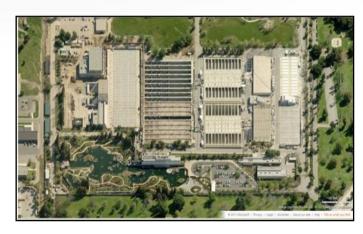
Short circuiting

Increase in O&M cost

Power consumption

Chemical usage

Maintenance cost


Background

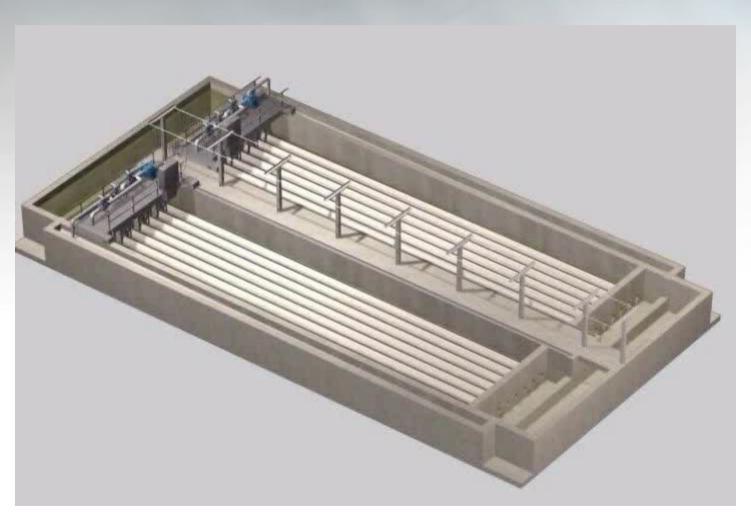
Fox Metro Water Reclamation Facility

Trinity River Authority (TRA) Central WWTP

Donald C. Tillman Water Reclamation Plant

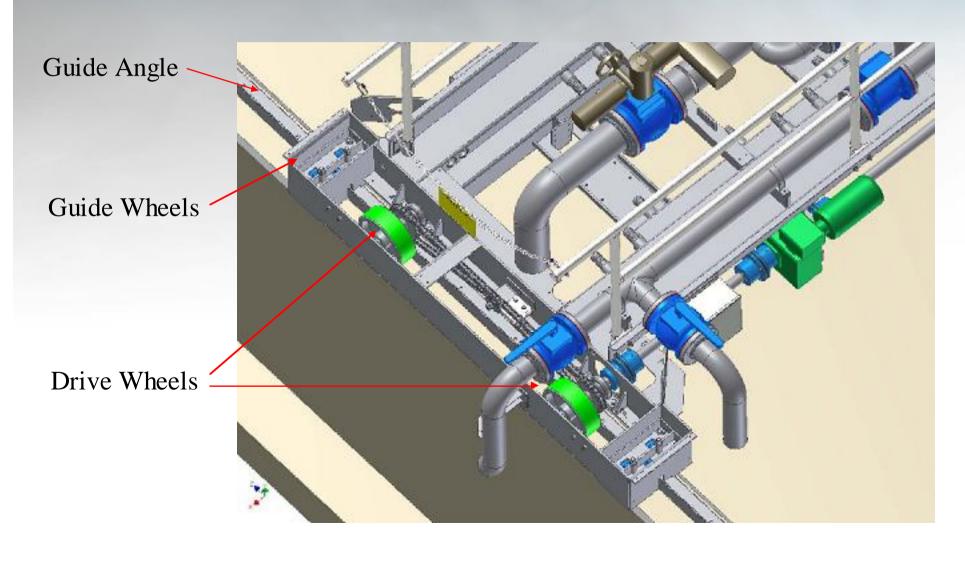
Solution Criteria

- Increase unit flow capacity without new construction
- Handle clarifier upsets and/or storm flow condition
- Eliminate bio-fouling in the filter media
- Utilize the existing building and filters during expansion


Comparison of TBF and AquaDiamond® Filter

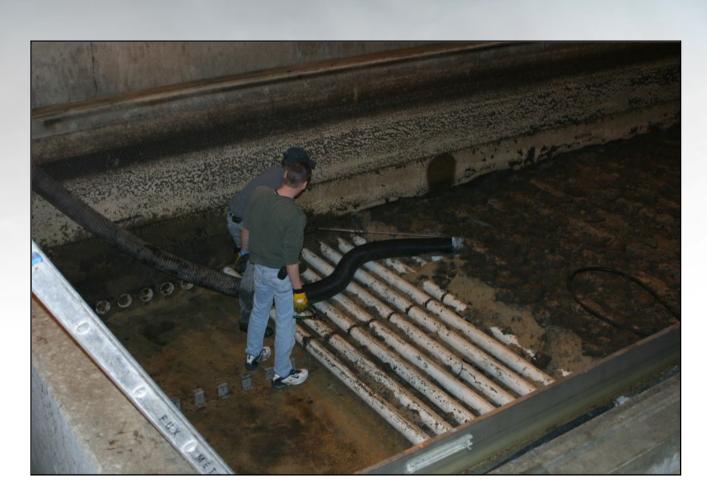
Filtration System	TBF	AquaDiamond® Filter
Filter Bed Size	4.9 m (16 ft) x 33.6 m (110 ft)	4.9 m (16 ft) x 29.0 m (95 ft)
Available Filtration Area (m ²⁾	164	238
Average Design Flux Rate (m/h)	5 (2 gpm/sf)	8 (3.25 gpm/sf)
Average Design Flow (m ³ /d)	19,200	45,600
Peak Design Flux Rate (m/h)	12 (5 gpm/sf)	16 (6.5 gpm/sf)
Peak Design Flow (m ³ /d)	48,000	91,200
Solid Loading Rate (kg/m²/d)	5.9	8.6

Cloth Media - The Key Component


AquaDiamond® Filter Operation

Filter Benefits - Accessibility of Components

Filter Benefits – Improved Drive & Tracking

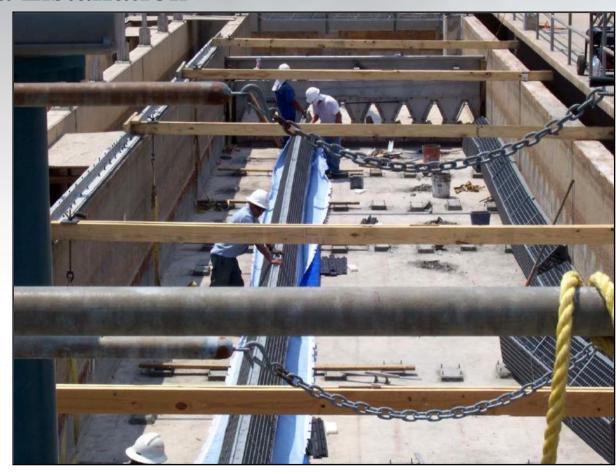

AquaDiamond® Filter Backwash Shoe

AquaDiamond® Filter - Floating Solids Removal

Demolition of Existing TBF

Influent Structure

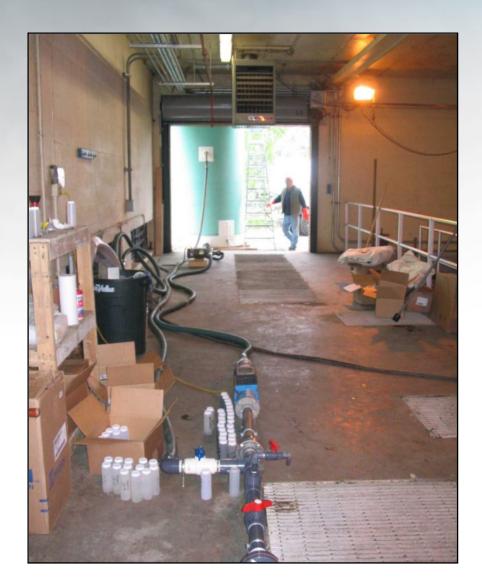
Influent Structure


Effluent Wall

Frame Assembly

Cloth Media Installation

Installed Unit

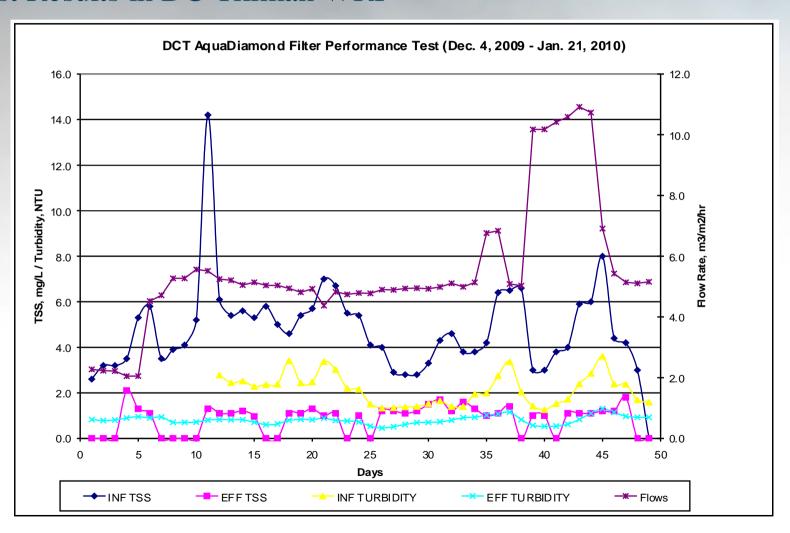

AquaDiamond® Filter Start-up

Installations	Fox Metro WRF	TRA Central WWTP	D.C. Tillman WRP
No. of Filter Units Retrofitted	5	6	8
Startup Time	January 2005	February 2008	January 2010
Designed Peak Flow Capacity, m ³ /d	456,000	547,200	730,000

Filter Testing

- Test protocols developed and approved
- One week to two months duration
- Average flows and loads conditions
- Maximum flows and loads conditions
- TSS, turbidity, flow rates, backwash rates

High Solids Testing


Test Results in Fox Metro WRF

Date	Filter Flow (m ³ /d)		Influent TSS mg/L		Average Effluent TSS	Backwash Rate
	Maximum	Average	Maximum	Average	(mg/L)	
1	59,500	53,785	11	9.8	2.2	0.63%
2	55,526	42,506	10	6.9	2.7	0.56%
3	48,448	39,705	12	6.8	3.5	0.56%
4	56,132	40,462	12	6.2	2.0	0.50%
5	51,362	36,752	12	6.5	2.4	0.60%
6	46,101	36,336	10	4.9	2.9	0.56%
7	46,896	37,396	11	6.8	2.7	0.51%
8	55,375	39,478	9	4.8	2.2	0.80%
9	46,063	36,790	9	6.2	2.8	0.43%
10	44,436	36,336	8	4.7	2.5	0.51%
11	50,719	39,856	6	4.4	1.9	0.50%
12	51,060	38,645	8	4.5	1.9	0.48%
13	68,206	41,484	106	14.3	3.4	1.17%
14	69,493	58,819	171	25.3	5.2	1.41%
15	67,600	53,217	110	14.4	2.2	0.68%
16	63,437	49,962	8	5.7	2.2	0.40%
17	68,887	52,990	47	7.6	2.4	0.49%
18	56,056	43,868	7	4.8	2.5	0.55%
19	48,864	40,462	10	5.8	2.8	0.49%
20	45,042	38,039	10	6.6	4.3	0.56%
21	48,978	40,613	15	6.2	3.0	0.53%

Test Results in TRA Central WWTP

Date	Filter Flow (m³/d)		Influent TSS (mg/L)		Effluent TSS (mg/L)		Backwash
	Maximum	Average	Maximum	Average	Maximum	Average	Rate
11-Feb-08	-	49,761	-	10.2	-	1.7	1.69%
12-Feb-08	90,840	28,433	29.1	9.6	5.0	3.0	1.63%
13-Feb-08	90,840	26,514	58.9	12.6	1.6	1.6	2.23%
14-Feb-08	90,840	46,586	33.1	17.7	3.4	2.0	2.02%
15-Feb-08	-	47,241	-	14.0	-	2.0	1.63%
16-Feb-08	-	47,260	-	15.0	-	1.0	1.67%
17-Feb-08	-	40,772	-	15.0	-	1.0	1.56%

Test Results in DC Tillman WRP

Conclusions

- AquaDiamond® filter matched or excelled shallow bed traveling bridge sand filter performance
- AquaDiamond® filter minimized basin modifications required and fit the existing hydraulic profile
- Over 3 times flow capacity increase possible through the existing basins with the Diamond conversion

Conclusions (continued)

- At similar solids loading, cloth media significantly reduced backwash water volume compared to existing sand filters
- Cloth media able to handle higher solids concentration while maintaining effluent quality

Cloth Media Filter Retrofit Increases Filtration Capacity in Existing Sand Filter Basins of WWTPs in the USA

H. Lin, P.E. - Aqua-Aerobic Systems, Inc.

P. Baumann, P.E. - Aqua-Aerobic Systems, Inc.

T. Reid, P.E. – Aqua-Aerobic Systems, Inc.