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Evolution of Installed membrane and thermal  

capacity (cumulative ) 1980-2012 
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Breakdown of Total Worldwide Installed 

capacity by technology 
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Historical evolution of total installed capacities of 

desalination plants in the GCC countries 
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Evolution of Thermal Desalination  
Processes 

 
 



The multi-stage flash 

(MSF) desalination process 





High reliability 

& availability. 

Life-time over 30 

years 

Evolutionary 

Developments 

of MSF Plants 
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Life Time Capacity 

(migd) 

Year Plants S.

# 

34 4x5 1979 Jeddah-III 1 

32 10 x 5 1981 Jeddah-IV 2 

31 6 x 6.2 1982 Al-Jubail-I 3 

31 10 x 6 1982 Al-Khobar-II 4 

30 40 x 5.38 1983 Al-Jubail-II 5 

27 2 x 2.6 1986 Al-Khafji-II 6 

24 10 x 5.06 1989 Shoaiba-I 7 

24 4 x 6.5 1989 Shuqaiq-I 8 

32 5 x 5 1981 Yanbu-I 

 

9 

14 4 x 7.94 1999 Yanbu-II 10 

12 8 x 7.5 2001 Al-Khobar-III 11 

11 10 x 10 2002 Shoaiba-II 12 
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90%

7% 3%

Availability

Planned Shutdown

Forced Shutdown

91%

9%

Water Production

Design Deficiency

88%

12%

Power Production

Design Deficiency

Average Availability for Al-Jubail Plant Phase II 

(1983-2012) 

Average Water and Power Load Factors for Al-

Jubail Plant Phase II (1983-2012) 



12 

Reasons For high reliability 

and availability 

Selection of 

High Design 

Fouling Factor 
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BH 

Design 

Fouling 

Factors 

Al-Khobar III         0.264 m2 oC/kW 

Al-Khobar II       0.160 m2 oC/kW (1982) 

Shuaiba II           0.211 m2 oC/kW 

Shuaiba I            0.30  m2 oC//kW (1982) 

Tawaleh ‘B’            0.15 m2 oC/kW 

Jebel Ali                    0.12  m2 oC/kW 

 

Al-Jubail  II    0.176 m2 oC/kW (1983)  
 



14 

Reasons For high reliability 

and availability 

Selection of 

High Design 

Fouling Factor 

Effective 

alkaline scale 

control 



To overcome temperature

limitation (88 - 93 oC)

To overcome acid

treatment problems

Inhibitors Based

on Phosphonic Acid

Inhibitors Based on

Polycarboxylic Acid

High Temperature Scale

Control Additive (HTA)

Threshold Agents

1960's, 1970's

Acid Addition

1950's

Polyphosphate

Based Chemical

 HISTORICAL DEVELOPMENT OF

CONTROL OF ALKALINE SCALE

 Hybrid Treatment 

(Acid + Additive) 
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Economic Impact of Antiscalant Dose Rate 

Reduction in SWCC MSF Plants 
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Reasons For high reliability 

and availability 

Selection of 

High Design 

Fouling Factor 

Effective 

alkaline scale 

control 

Good 

Selection of 

Material of 

Construction 
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Section Material of Construction 

 

Brine Heater 

Shell Carbon steel (all plants) 

Tubes Either 70/30 o,90/10  Cu-Ni or modified 66/30/2/2 

Cu/Ni/Fe/Mn except Al-Jubail I (Titanium) 

 

 

Heat Recovery 

Section 

 

Flash 

Chamber 

• First high temperature stages Al-Jubail, Al-Khafji and 

the first two modules of Jeddah IV cladded with 

stainless steel 

• Al-Khobar II completely cladded with 90/10 Cu/Ni 

• Al-Shuqaiq 1completely claded with stainless steel 

Tubes All plants except Yanbu and Al-Jubail I: 90/10 Cu Ni  

Jubail I: Titanuim  

Yanbu 70/30 (1 to 10 stages) 

            90/10 (11 to 21 stages) 

Heat Rejection Tubes All plants except Jeddah & Shoaiba : Titanium 

Jeddah II, III, IV 90/10 Cu/Ni 

Shoaiba 70/30 Cu Ni 
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Flash chamber of both recovery 

and heat rejection sections  

Carbon steel lined with stainless steel 

(floor lined with 317L, walls with 

316L and roof with either 316L or 

304.  

 

Water boxes  

 

Carbon steel lined with 90/10 

Copper-Nickel  

 

Tubes  

Brine heater tubes modified 66/30/2/2 

Cu/Ni/Fe/Mn ; heat recovery tubes: 

Copper/Nickel (first four stages 70/30 

and remaining stages 90/10)  

 

Heat rejection tubes  

 

Titanium  &  

modified 66/30/2/2 Cu/Ni/Fe/Mn  

Projects which were recently built use the following materials of 

construction for the major components  



Increase in distiller 

size 

High reliability 

& availability. 

Life-time over 30 

years 

Evolutionary 

Developments 

of MSF Plants 

Evolutionary 

Developments 

of MSF Plants 

Evolutionary 

Developments 

of MSF Plants 

Evolutionary 

Developments 

of MSF Plants 

Evolutionary 

Developments 

of MSF Plants 



 

Historical Growth of MSF Distiller Size 
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• Low investment cost for auxiliary equipment such as interconnection and control 

piping . 

• Operating and maintenance people depends on the number of unit installed. 

• Savings in operational cost. 

Large unit size: 
 

23 



Reasons Constant Reduction of Investment per MIGD 
• optimized use of material of construction. 

•Reduction of redundant equipment. 

•Optimized mechanical design of evaporator vessel. 

•Optimized thermo-dynamic design parameters. 
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Use of thermally 

efficient power 

generation cycles  

Evolutionary 

Developments 

of MSF Plants 

Evolutionary 

Developments 

of MSF Plants 

Evolutionary 

Developments 

of MSF Plants 

Evolutionary 

Developments 

of MSF Plants 
Increase in distiller 

size 

High reliability 

& availability. 

Life-time over 30 

years 

Evolutionary 

Developments 

of MSF Plants 



Seawater 

Pretreatment 

Power generation 

 Plant 

Desalination 

 Plant 

Desalinated 

water   

LP steam 

Condensate 

Net power 

output 

Pumping 

power 

Seawater intake  

Operation flow chart for a water/power cogeneration plant Power/Water Flow Chart 
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27 

Extraction / 

Condensing  

Turbine 

Condenser 

Condensate 

Pump 

 

Heater # 1 

  Deaerator 

MSF 

Boiler 

 

Fuel 

 

To Ejectors 

Before 1982 SWCC employed Extraction-

condensing turbine arrangement  

Power to water ratio 12 to 15 MW/MIGD  

Jeddah II,III,IV      AlJubail I     Yanbu I        Alkhobar II 
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28 

After  1983 SWCC employed back-pressure turbine   arrangement 

Condensate Pump 

MSF Distillers 

Deaerator 

Heater # 2 Heater # 1 

G 

Boiler 

Fuel 

Back Pressure 

Turbine 

Ejector Moisture  

Separator 

Power to water ratio 5 to 7.9 MW/MIGD  

 



After  1983 SWCC employed back-pressure turbine   arrangement 



 2012 Combined Gas-vapor power generation cycles coupled with MSF/RO desalination 

plants 

Compressor Gas 

Turbine 

Combustion 

Chamber 

Steam  

Turbine 

Exhaust 

gases 
Air in 

Recovery 

Section 

GAS CYCLE 

STEAM CYCLE 

Waste Heat Boiler 

Rejection 

Section 

Product Water 

Blow down 
Brine 

Heater 

Fuel in 

Recycle Brine 

Power Output 

Power Output 

Seawater in 

Cooling 

Seawater 

Reject 

SWRO 

1100 oC 

613 oC 

539 oC 

    140 oC, 2.89  Bar 

Ejector 

Steam 

18 bar, 50 

MW 

230oC 

300,000  

m3/d 1,000,000  m3/d 
62.5 MW 

700,000  

m3/d 

81 

MW Common 

Equipment 

Net 

 2400 MW 

5 x 129.7  MW 



Typical power to water ratios for different technologies 

Technology PWR (MW installed/Million Imperial Gallopns per) 

Steam turbine BTG-MED 3.5 

Steam turbine BTG-MSF 5 

Steam turbine EST-MED 7 

Steam turbine EST-MSF 10 

Gas turbine GT-HRSG-MED 6 

Gas turbine GT-HRSF-MSF 8 

Combine cycle BTG-MED 10 

Combine cycle BTG- MSF 16 

Combine cycle EST-MED 12 

Combine cycle EST-MSF 19 



Financial Benefits  for Dual Purpose Plants 

■ Tremendous saving in fuel consumption related to 

the desalting process 

■ Elimination of some equipment                          

(power plant condenser) 

   Dual purpose power/water plants have an overall 

financial gain against two single purpose plants. 

■ Sharing of some common equipment (boiler and its 

associated facilities, intake and outfall facilities). 



243 MW 

204 MW 

100 

Electrical  

Water Production  

15 MIGD  

Dual 

Purpose 

Dual 

Purpose 

=447 MW 

MW 

Fuel 

requirements 

285 MW 

280 MW 

Single  

Purpose 

Single  

Purpose 

=565 MW 

Fuel 

requirements 

Thermal Benefits of Cogeneration Plants 



Thermal 

 Processes 

 MSF 

MED/TVC 



MED_TVC 
offers the best potential method of improving the performance of straight MED desalination plants and 

achieving high performance ratios and hence low water cost.  

 or Steam  
Transformer 

GOR=6 

1kg 



Historical evolution of the installed capacities of MED 

desalination plants in the GCC states. 
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MARAFIQ POWER/WATER COGENERATION PLANT 

Four power cycles : each power cycle incorporates 3 GT,3HRSG and one ST 

  Three of the power cycles are coupled with 27 MED units.  



■ 27 MED/TVC Desalination units each produces 

6.56 MIGD, total  177.2 MIGD 

■ Power generation  2750 MW 

■ Independent water and power production project 

(IWPP) 

■ Contract of water plant  US$ 945 million 

■ Project  completed in 2010.  

Marafiq Power/Water 

Cogeneration Plant 



 They provide higher overall heat transfer coefficients when 

compared to multistage flash (MSF) desalination systems. 

 MED does not employ recycling and are thus based on the 

once through principle and have low requirements for 

pumping energy. 

 The power consumption of MED/TVC plants is only around 

1.5 kWh/m3 as there are no requirements to re-circulate large 

quantities of brine. 

 Increase of MED unit capacity results in the decrease of the 

investment cost. 

 Multi-effect distillation also offers the possibility of reducing 

the plant size and footprint 

Factors responsible for the recent market emergence of 

MED-TVC desalination plants 
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 HYBRID CONCEPTS 
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Seawater 

RO 

DESALINATION PLANT 
PRODUCT 

WATER 

Power/Water Hybrid Flow Chart 

Seawater intake 

Blending 

Power Plant Thermal Desalination 
Plant Pumping power 

steam 

condensate 

Power 

Pumping 

Power Distillate 

Permeate 



Integrated Hybrid  systems 

the plant is designed from  

the beginning  

as a combined plant . 

HYBRID  

SYSTEMS 

Simple hybrid Systems  

adding a stand- alone  

RO desalination 

 plant to an existing MSF complex  



 

 

Power Plant 

Electricity 

 

To main grid 

 

 

To RO Plant 

 

To MSF Plant 

 

 

 

 

MSF Unit 
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Return 

Steam to MSF 

Heat 

Rejection 
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Out 
Common  
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Facility 

Blended 

Product 

MSF Product  
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Brine 

Blow Down 

 

 Single Pass 
            

                   RO Unit 

 

Common 

Intake  

Facility 

MSF 

Feed 

 

RO 

Feed 

Seawater Feed 
RO 

Product 

 

Schematic diagram of simple hybrid configuration 



ADVANTAGES 
  

• Such arrangement allows to operate the RO unit with relatively 
high TDS and consequently allows to lower the replacement 
rate of the membranes.  

 

• If the useful life of the RO membrane can be extended from 3 to 
5 years the annual membrane replacement cost can be reduced 
by nearly 40 percent . Blending the products of the thermal and 
SWRO allows for the use of a single stage SWRO instead of the 
two stage SWRO plant normally employed in standalone SWRO 
plants.  

 

• Combining thermal and membranes desalination plant in the 
same site will allow to use common intake and outfall facilities 
with less capital cost. 

 

• An integrated pretreatment and post-treatment operation can 
reduce cost and chemicals. 

 



Hybrid 

 systems 

Simple hybrid 

 Integrated 

Hybrid  



Schematic diagram of fully integrated hybrid configuration 
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Commercially Available  

Hybrid Desalination  

Plants 

Jeddah  

MSF/SWRO 

Yanbu  

MSF / SWRO 

Al-Jubail 

MSF/SWRO 

Ras Al Khair 

MSF/SWRO 

Product blended with MSF Product 

      SWRO   28.16 MIGD  

      Phase II  MSF  40 MIGD 

       20  MIGD  

      Comman intake/outful with MSF  

       Product blended with MSF 

1989 , Phase I 

Single stage , 12.5  MIGD 

1994 , Phase II 

Single stage , 12-5 MIGD 
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Block diagram of the combined power cycle integrated  

with the hybrid MSF/SWRO desalination plant 
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R&D PROSPECTS 

 

 



R&D  

PROSPECTS IN  

THERMAL 

 DESALINATION 

Address the shortcomings 

Of currently employed thermal 

 desalination processes 

Development of desalination concepts 

That have not been fully explored and 

Applied in commercial scale 

Development of new desalination concepts 



R&D  

PROSPECTS IN  

THERMAL 

 DESALINATION 

Address the shortcomings 

Of currently employed thermal 

 desalination processes 



R&D PROSPECTS 

Address the shortcomings of current thermal desalination processes.  
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Impact of variation of TBT on MSF water production and performance ratio 



Prohibitive Zone  

 Impact of the variation of operating temperature on the energy 

consumption of the   MED Process 

 

                 

 

To eliminate the possibility of scale formation, commercial MED  

desalination plants are currently operating with TBT up to 65 oC . 

 



NF Reject 

 

Seawater 

NF Unit 

NF Product 

Ca = 481 

Mg = 1507  

TH = 7406 

HCO3 = 145 

 SO4 = 3257 

TDS = 

45400 
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HCO3 = 51 
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32060 

NF/RO/MSF or NF/RO/MED Tri-hybird System 
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RO Product  
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 SO4 = - 
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MSF/MED Unit 
MSF/MED  Product 

  



  Schematic flow diagram of trihybrid NF/RO/MED desalination system 
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CONCEPTUAL DESIGN OF THE  HIGH 

TEMPERATURE AND UNIT CAPACITY  

MED-TVC DESALINATION PLANT 



Configuration of new MED/TVC desalination plants 
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Schematic flow diagram of MED 

unit of Tri-Hybrid Desalination Plant  
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  Schematic flow diagram of trihybrid NF/RO/MSF desalination system 
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 Comparison between the standalone MSF and 

MSF combined with NF/RO configuration 
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Prospects of reduction of operational cost 

of SWCC small scale thermal desalination 

plants using solar energy 
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SWCC-SWDRI/HITACHI ZOSEN Joint  Solar Research Project 

Schematic diagram of the solar assisted thermal desalination 
experimental set-up 
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