Water Arabia 2013 Conference & Exhibition

Innovative Water and Wastewater Technologies for a Sustainable Environment

4 to 6 February, 2013 Le Meridien | Khobar, Saudi Arabia

Addressing increasing wastewater volumes in industrial and oil & gas operations using thermal systems

Ali Ben Haj Hamida

Global Leader
Enhanced Oil Recovery
GE Power & Water, Water & Process Technologies

6th February, 2013

The Water Treatment Spectrum

Case Study

IOR Water Injection Project – West Qurna

Project Name:

State, region, country:

Industry:

Client:

EPC:

Prime Technology:

Capacity:

West Qurna IOR

West Qurna, Basra, Iraq

O&G, Upstream

SCOP, Ministry of Oil

"EP": GEW - "C" by : SCOP

UF & Deoxygenation

~4000 m³/h

Application of Desal Technology

BC is uniquely suited to remove high salt levels AND achieve the highest water recovery for water scarce areas.

Use Membranes if...

• technically feasible, given the cost advantage

Use Thermal if...

- Zero Liquid Discharge is required
- TDS of the feed is high and scaling tendencies of the membranes are likely

Use Membranes upstream of an Evaporator if ...

• The flow is large (> 100 GPM) and preconcentration can be done, saving OPEX

Difficult to Treat Water and Zero Liquid Discharge

Thermal and ZLD

Waste streams

- Cooling tower blowdown
- Demineralizer waste
- Process wastewater
- Ash pond blowdown
- Scrubber blowdown
- Plant drains
- Produced water
- Oil Sands, SAGD

- Boiler blowdown
- Reverse osmosis reject
- Electrodialysis reject
- Mine drainage
- Salty effluents
- Landfill leachate
- Unconventional Gas, Frac Water/Shale Gas

Drivers

Environmental discharge regulations
Water reuse quantity and quality
Capital vs. energy costs
Materials of construction
Waste to value

Evaporator and Crystallizer Technology

Evaporator

Crystallizer

ZLD is achieved through the combination of evaporation followed by crystallization

Seeded Slurry Technology

Cedar Bay Brine Concentrator/Crystalizer

Produced Water Evaporation Process for Thermal EOR

Steam to Field **Evaporation/Brine** Production / Deoiling **Steam Generation** Concentrator Blowdown Disposal Makeup Water **Optional ZLD** imagination at work Water & Process Technologies © 2013 General Electric Company

Produced Water Evaporation Process

Evaporator and Crystallizer Benefits

Brine Concentrator

- Corrosion resistant titanium High grade construction means GE BCs will last for decades.
- Scale control —Proprietary seeded slurry tech. controls scale, limiting cleaning periods.
- Patented brine distributors Individual tube distributors ensure a smooth flow of brine, avoiding scale formation.
- Variable waste flows 10 gpm to 1,200 gpm for a single BC.
- Energy-efficient operation
- Ability to run on electricity or steam
- Fully automated operation Maintain precise system control while minimizing operator interaction.

Crystallizer benefits

- Ease of use —With simple color graphic controls and an automatic wash system, GE's crystallizers are easy to operate.
- **Ease of installation** —Skid-mounted, fully packaged systems with all auxiliary equipment and controls.
- Valuable product recovery —Systems can be designed to recover specific salts from a waste stream.
- Expertise in zero liquid discharge GE has more than 35 years of experience developing and implementing thermal technologies to solve zero liquid discharge challenges for customers worldwide.

ZLD – Creating Value

Mobile Evaporator

Tight (Shale) Gas -> Fracturing

- Tight gas reservoirs require fracturing to produce the gas
- Fracturing requires high volumes of water to prepare fracturing fluid.
- Fracturing results in even higher volumes of produced water and formation water flowback.
- Requirements are
 - Source water filtration, some options being
 - Mobile Ultrafiltration (UF)/Reverse Osmosis (RO)
 - Build-Own-Operate (BOO)
 - Produced water recycling, some options being
 - Thermal, membrane, filtration, chemistry

Thermal Experience

GE Thermal Products & ZLD

- World leader in Zero Liquid Discharge (ZLD) technology
- 40 years of thermal waste water reuse experience
- Over 275 operating evaporator and crystallizer units at more than 150 installation sites.
- Supplied a majority of all ZLD systems

Canadian Oil sands projects recycle 80–95 per cent of water used.

