

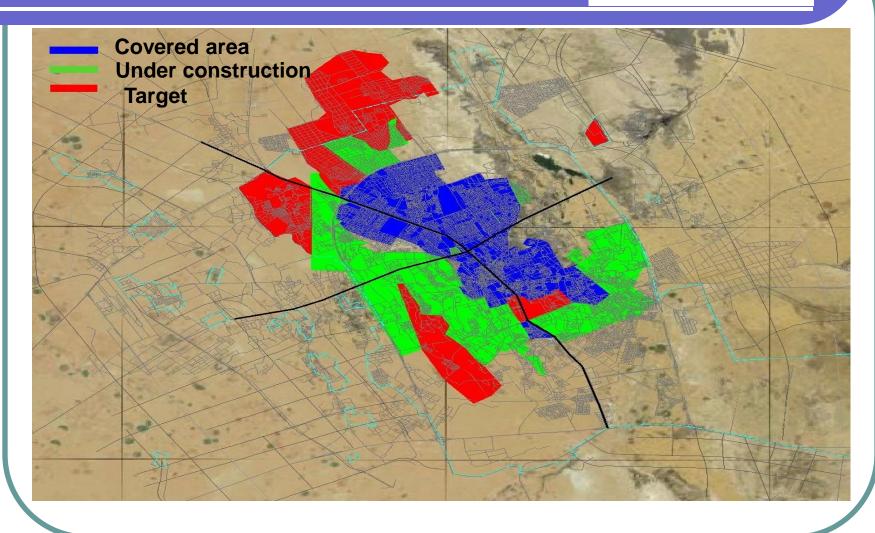
Technical Problems of Sewage Treatment Plants in Qassim region Buraydah STP 1 (Cass Study)

Eng: Ibrahim S Al-Rroqaibah General Manager of water in Qassim region

Chemist: Ayad N Al-Dalbahy Director of Central Laboratory

Contents

- Introduction.
- Operational status.
- Technical Problems.
- Solutions .


Introduction

- The population of Buraydah is (467,410, according to census 1431 Hijri.
- Number of sewer connections (68000) .
- Design Capacity of plant is (69000 m³/d).
- Operation started on (Dec. 2002).
- Plant used carousel system.

Sewage networks Coverage in Buraydah City

Plant Component

- 1 -Mechanical Screen
- 2- Aeration tanks
- 3 sedimentation tanks
- 4 sand filters
- 5 contact chambers
- 6 water pumping unit
- 7 water outlet
- 8 screw pumps
- 9 condensation tanks
- 10 sludge piston
- 11 Deodorant
- 12 standby generator
- 13 control unit

Operational status of plant

First:

operational parameters during flow 69000 m³ / d results as follows:

No.	Standard	Allowable mg/L	Influent mg/L	Effluent mg/L	
1	SS	10	160 to 250	3	
2	BOD	10	150 to 210	4	
3	COD		290 to 420	9	
4	N-NH ₃	5	12 to 25	0.3	
5	Fecal coliform	2.2 cell / 100 ml		> 1 cell / 100 ml	

Operational status of the station

• **Second**: operational parameters during flow 75000 m³ / d

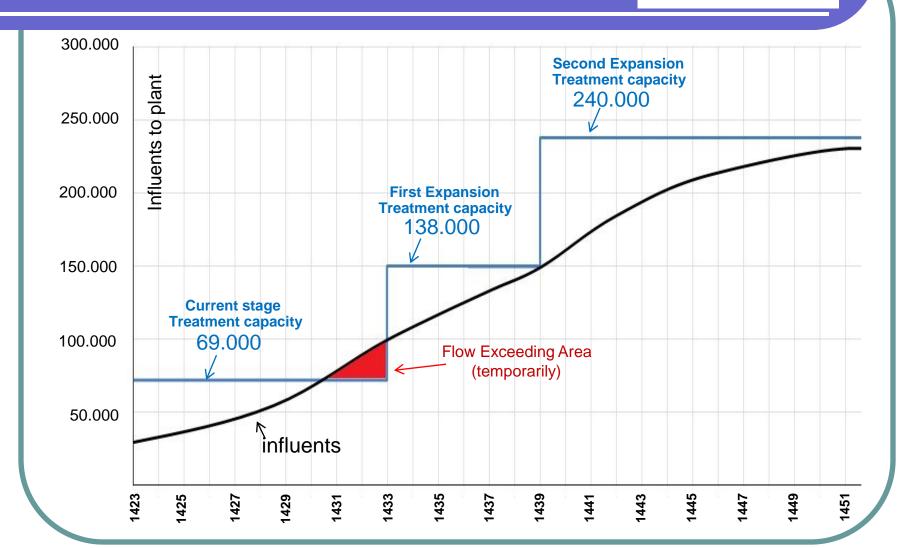
No.	Standard	Allowable mg/L	Influent mg/L	Effluent mg/L
1	SS	10	160 to 250	9
2	BOD	10	150 to 210	8
3	COD		290 to 420	21
4	NH ₃ -N	5	12 to 25	0.49
5	Fecal coliform	2.2 cell / 100 ml		57 cell / 100 ml

Operational status of the plant

• Third: operational parameters during flow 78000 m³ / d

No.	Standard	Allowable mg/L	Influent mg/L	Effluent mg/L
1	SS	SS 10		10
2	BOD	10	150 to 210	10
3	COD		290 to 420	24
4	NH ₃ -N	5	12 to 25	5
5	Fecal coliform	2.2 cell / 100 ml		77 cell / 100 ml

Operational status of the plant


• Forth:

operational parameters beyond standard in flow 96000 m³ / d

No.	Standard	Allowable mg/L	Influent mg/L	Effluent mg/L
1	SS	10 160 to 250		18
2	BOD	10	150 to 210	12
3	COD		290 to 420	44
4	NH ₃ -N	5	12 to 25	5.5
5	Fecal coliform	2.2 cell / 100 ml		394 cell / 100 ml

Influents with treatment ability

Technical Problems of plant

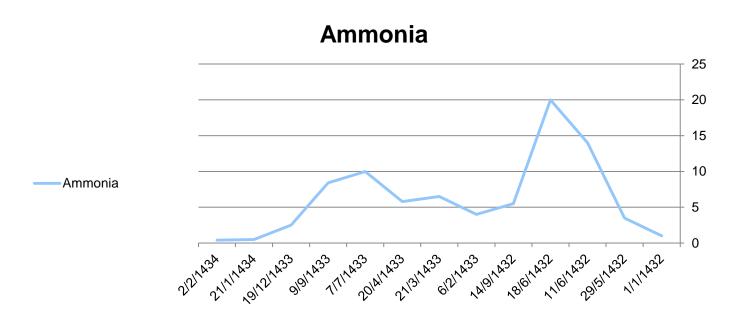
Increasing of influent over design capacity reaching 100,000 m³/ day cause the following problems:

First: lack of treatment cause:


A- Increasing concentrations of sludge in the aeration tank led to a rise in MLSS (mixed liquor suspended solids)

This negative impact occurs on the supply of oxygen to oxidize

		Operational	Result	mg/l
	Test	Operational Standard	Before	During the
		Stanuaru	Problem	Problem
1	MLSS	3000 - 6000	3100	21500



b- Increasing Suspended Solids (SS)

C- High concentrations of ammonia NH₃ in effluents of aeration tanks, it is gives an indication of incomplete oxidation of nitrogen

d-Increased growth of bacterial colonies

Analysis Result:

المملكة العربية السعودية وزارة الهياه والكهرباء المديرية العامة للمياة بمنطقة القصيم الإدارة العامة للتشغيل والصيانة إدارة المواد والمختبر المركزي

نتيجة تحليل عينة مياه صرف صحى

تاريخ العينة: ١٤٣٢/٠٩/١٤هـ الجهة المرسله: المختبر المركزي

رقم العينة : ٣٢٠١٣٠٠٥

مكان العينة : محطة المعالجة الأولى داخل/ خارج

الخارج	الداخل	الاختبارات			
7.31	7.30	الأس الهيدروجيني pH			
5.5	9.5	الفوسفات PO ₄ mg/L			
1565	1800	المواد الصلبة الكلية T.S. mg/L			
16	325	المواد الصلبة العالقة S.S. Mg/L			
0.46		الكلور الحر mg/L الكلور الحر			
6.4	206	متطلب الأكسجين الحيوي mg/L وBOD5			
44	559	متطلب الأكسجين الكيميائي COD mg/L			
5.5	30	الأمونيا NH3-N mg/L			
<1	829.7×10 ⁵	العد الكلي لبكتريا القولون (MPN / 100 ml)			
<1	313×10 ⁵	العد الكلي لبكتريا القولون البرازية (MPN/100 mL (MPN/100 mL			

١ – ارتفاع المواد الصلبه العالقه عن الحد المسموح به.

٢ - ارتفاع الأمونيا عن الحد المسموح به .

موير إدارة المختبر المركزي

عادل العباد

Second: H₂S and VOC odours

	Sites	8 Am	11 Am	2 Pm	6 Pm	9 Pm	12 Am	2 Am	6 Am
1	Mechanical screen mg/l	4.6	3.5	4.7	3.3	4.3	2.4	4.3	3.9
2	Sludge building mg/l	11.8	7.1	8.5	10.9	9.6	9.4	6.4	7
3	Tracking Area mg /l	0.9	0.00	1.2	1.1	0.00	1.3	0.9	0.4

Third: Inability to discharge the whole quantity through pumping system.

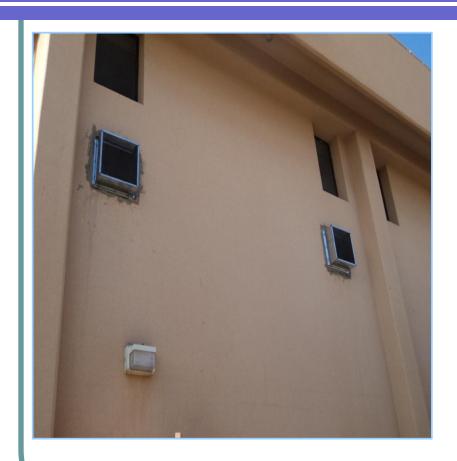
Solutions

Temporary Solutions:

First:

Remove sludge from aeration tanks by tankers to the landfill.

Temporary solutions :



The second solution: to reduce odour:

- Cover inlets area.
- Install carbon filters on sludge building .
- Install a spray system of odour retardant materials next to sludge building.
- Install barriers and covers in tracking area

Temporary solutions:

Temporary solutions:

 Third: Installed an additional chlorine dosage unit using calcium hypochlorite

Analysis results of H2S after solutions applying :

The Readings of hydrogen sulfide gas Concentration measured in April 2012

	Sites	8 Am	11 Am	2 Pm	6 Pm	9 Pm	12 Am	2 Am	6 Am
1	Mechanical screen mg/l	2.4	2.9	3.1	2.4	2.1	1.9	2.9	3.1
2	Sludge building mg / l	2.9	3.2	2.7	2.3	1.8	1.3	2.3	4.2
3	Tracking Area mg /I	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

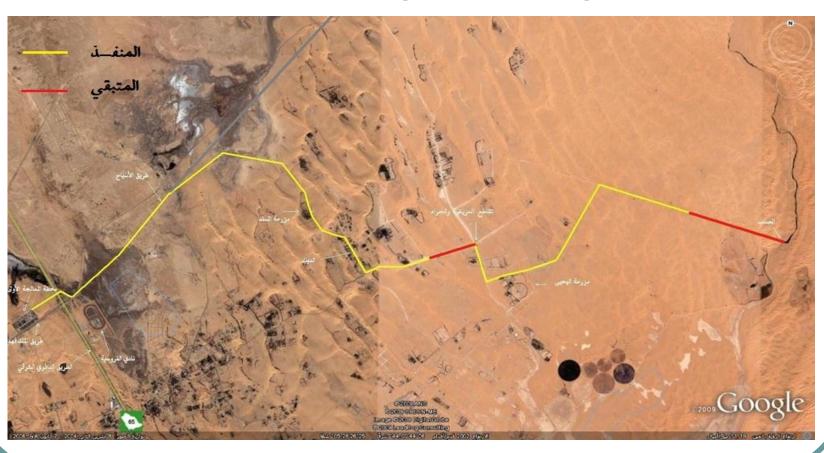
Permanent Solutions

First:

Start operate the expansion on July 2012 (138,000 m³/d).

Plant expansion project (second stage)

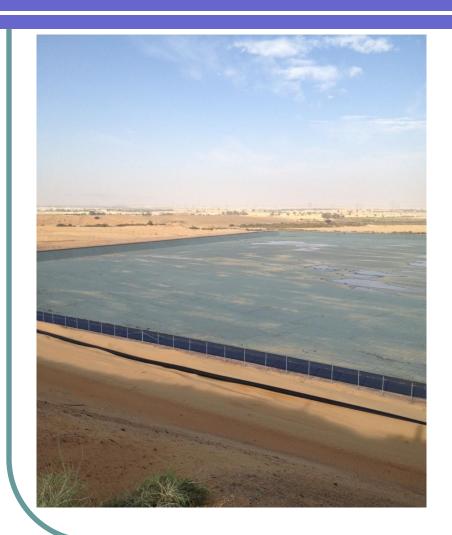
Expansion Project

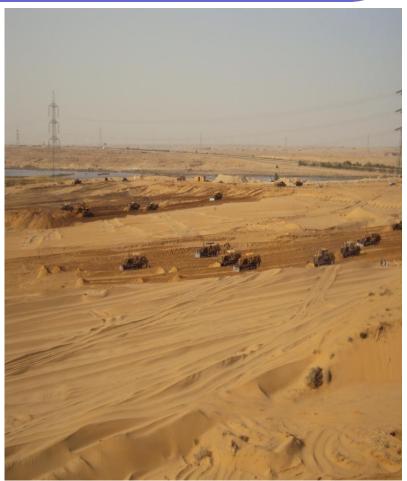


Permanent Solutions:

Second: operating a new pumping line

Permanent Solutions:

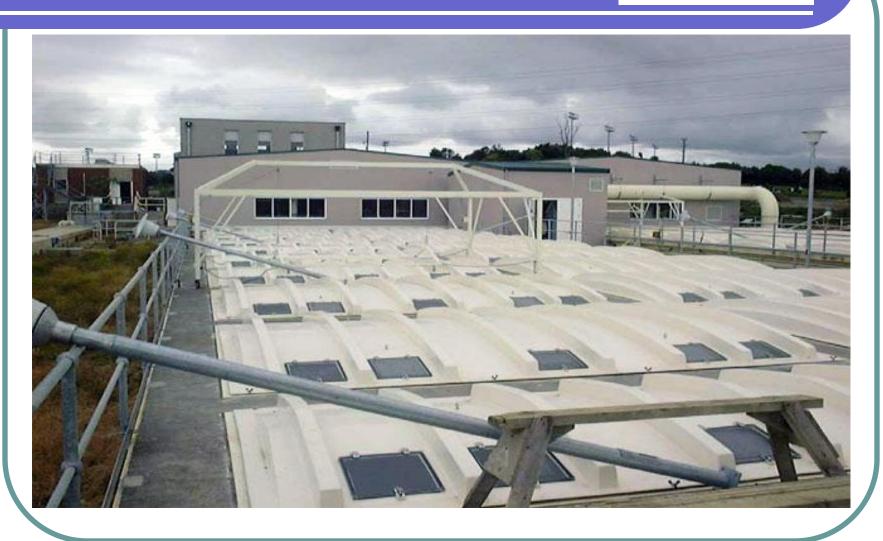



Third:

Operating emergency lagoon (total capacity 1.000.000 m³).

emergency lagoon

Permanent Solutions:



Fourth:

Sign a contract to constrict a complete odours' control system.

Picture simulates odour control project

Current operational status:

Stability in all operational parameter (flow 105.000 m³ / d)

No.	Standard	Allowable mg/L	Influent mg/L	Effluent mg/L
1	SS	SS 10 160 to 250		3
2	BOD	10	150 to 210	3
3	COD		290 to 420	8
4	NH ₃ -N	5	12 to 25	0.04
5	Fecal coliform	2.2 cell / 100 ml		Less than 1 cell / 100 ml

Thank you for your kind listening

