

EcoRight[™] MBR Reuse Technology Water Arabia Conference Khobar, Saudi Arabia.

William G. Conner

February 6, 2013

Outline

Oily WW Treatment Challenges

Treatment Options

- Biological IWWTP & GAC Columns
- PACT WWTP
- MBR & GAC Columns
- PAC MBR (Carbon Enhanced MBR)
- GAC MBR

Conclusion / Summary

• Refinery / Oil Processing Wastewater

- High Temp (> 50 C) Bio Difficult
- High Chlorides (->1,000 mg/L)
- V. High TDS (5,000 + mg/L)
- V. High Feed Conc. Changes
- High Ammonia/Phenol Concentrations
- Frequent Flow interruptions
- Refractory Organics
- High Maintenance Sensitivity
- Water Conservation Important

Main Concern

Refractory Organics

• Conventional WWTP – Not Feasible

Carbon Adsorption Required

Treatment Options

- Oil/Water Sep. & Conventional IWWTP
 Conventional IWWTP & GAC Columns
 PACT IWWTP
- Oil/Water Separation & MBR
 - MBR & GAC Columns
 - PAC MBR (Carbon Enhanced)
 - GAC MBR EcoRight MBR

Conventional Biological Treatment & GAC Columns

Sanitary Wastewater

to **Disposal**

Refinery Stormwater,

ارامكو السمودية Saudi Aramco

Conventional Biological Treatment Advantages / Disadvantages

Advantages:

Most common system

Disadvantages

- Biomass unstable feed fluctuations = upsets
- Solids won't settle in Clarifier
- Can't meet effluent requirements w/o GAC
- Ammonia may be toxic
- Extensive plot area required to accommodate equipment – Space Limitations

MBR & GAC Column Design

MBR & GAC Columns Advantages / Disadvantages

Advantages:

- No Clarifier = No Settling Problems
- Smaller Footprint
- More Stable Biomass

Disadvantages

- Membrane Fouling
- High Cost for GAC Replacement / Regeneration

PAC MBR Process Design

PAC MBR COD Removal

MBR & PAC MBR Comparison

	Feed	MBR Removal %	PAC MBR Removal %
BOD	~400 mg/L	(~4 mg/L) 99%	(~5 mg/L) 99%
COD	~750 mg/L	(151 mg/L) 81%	(46 mg/l) 92%
TOC	~200 mg/L	(27 mg/L) 86%	(11 mg/L) 94%

Effluent Comparison

ارامكو السمودية Saudi Aramco

Petro(tm)MBR Effluent

PAC Petro(tm)MBR Effluent

Refinery Wastewater Blend MBR Effluent

Membrane Comparison

PAC PetroMBR Module

PetroMBR Module

14 Dec 2006

MBR – PAC MBR RO Comparison

	MBR	PAC MBR
<mark>Silica - Total</mark>	1.1 mg/L	<0.2 mg/L
<u>Turbidity</u>	0.43 NTU	<0.18 NTU
Total Dissolved Solids	238 mg/L	27 mg/L

Membrane Abrasion

500X

ارامكو السمودية Saudi Aramco

PAC MBR (Carbon Enhanced)

Advantages:

- No Clarifier = No Settling Problems
- Smaller Footprint
- More Stable Biomass
- Lower Cost for Carbon
- No Fouling
- Reuse Possible

Disadvantages

Membrane Abrasion

GAC MBR Bench Results

EcoRight[™]MBR Pilot Unit

Field Pilot Plant Test Results

GAC-MBR Testing

Field Pilot Plant Test Results

Chemical Oxygen Demand (mg/L)

ارامكو السمودية Saudi Aramco

Conclusions from RTR Pilot

GAC MBR Technology:

- Very Tolerant of Upsets
- High Removal Efficiencies Possible
- Allows Reuse RO Not Affected by Discharge

Testing Demonstrated:

- GAC Regeneration Equilibrium Established
- Suspension Patents Effective
- GAC Not Damaged by Aeration
- System Not Sensitive to High [Oil]
- Nitrification Temperature Sensitive Cooling Req'd
- GAC Lasts > 6 Months
- COD Analytical Problems Chlorides / Carbonates??

NeSummaty R Technology - Theory

CONVENTIONAL ACTIVATED SLUDGE PROCESS

Thank You