Groundwater Aquifer Recharge and Recovery (ARR): An Adaptation Strategy for Climate Change-Induced Water Scarcity in the KSA/GCC Region

Gary Amy, Thomas Missimer, and Joerg Drewes

Water Desalination and Reuse Center (WDRC) King Abdullah University of Science and Technology (KAUST)

Aquifer Recharge and Recovery (AAR): Variations on a Theme

- ARR = Aquifer Recharge and Recovery;
 Infiltration Basin ⇒ Recovery Well
 - ➤ ASR = Aquifer Storage and Recovery ⇒ one well (injection and recovery)
 - ➤ ASTR = Aquifer Storage Transfer and Recovery ⇒ two wells

- Can Manage Travel Distance ✓, Travel (Residence) Time ✓, Redox ?
- Suitable (Geo)Hydrology and Storage ?
- Dissolution of Natural Contaminants (e.g., As) ?

ARR: Infiltration (Recharge) to Recovery (Cikurel, 2004)

Impermeable

Unsaturated (Vadose) Zone: Treatment (Oxic → Anoxic)
Saturated Zone: Treatment (Oxic) + Storage

کاوست KAUST

Attributes of ARR

- A Physico-Biological Process
 - Filtration and Biodegradation
 - − Biodegradation (Sustainability) ✓
 vs. Sorption
- A Sustainable Process

- Low Cost, Low Energy, low GHGs, Minimal Chemicals

• Provides Both Treatment and (Subsurface) Storage

Potential Source Waters

- Wastewater (Effluent)
 - Secondary
 - Primary? (advanced primary: SS ψ)
- Stormwater
 - Urban Runoff
 - Natural Catchment Runoff
- Desalinated Water
 - Storage for Water Security

```
Treatment
& Storage
```

Potential Roles for ARR (and ASR)

- Aquifer Recharge and Recovery (ARR) as Robust, Multi-Contaminant Treatment Barrier
- Engineered ARR for Urban Runoff Infiltration
 - Infiltration Basin Amendments or Permeable Treatment Bed Targeting Inorganic Micropollutants (e.g., Zn, Cu, Cr) (e.g., Iron Oxide Layer)
- Desalination
 - Aquifer Storage and Recovery (ASR) for (Seasonal) Excess Desalination Production (being implemented in Qatar and Abu Dhabi)

Factors Affecting Performance of ARR System

- Site Specific Conditions
 - Source Water (WW effluent, stormwater)
 - Geology and Soils
 - Geohydrology
 - Alluvial, *Unconfined Aquifer* ✓ vs. Confined Aquifer
 - Aquifer Depth (Depth to Water Table) ⇒ Vadose Zone
 - Aquifer Thickness (water table to bedrock)
 - *Permeability* (Hydraulic Conductivity) !
 - Travel Distance
 - Well Placement and Spacing between Wells
 - Travel (Residence) Time
 - Well Placement and Operation (Pumping Rate)
 - Permeability (Hydraulic Conductivity)

- Travel Distance (to recovery wells) > <10 m to > 100 m
- Residence (Travel) Time
 - <10 d to > 100 d
- Dilution/Mixing: Percent (%) Infiltrate
 - Defined by Conservative Tracer (vs. native groundwater)
- Soil Permeability > 10⁻⁴ to 10⁻² m/s
- Water Quality
 - ➤ Temperature, pH
 - Dissolved Oxygen (DO), Nitrate (NO₃⁻), Redox (Oxidation-Reduction Potential)
- Soil Components
 - ➢ Iron and Manganese (possible reductive dissolution)
 - \succ Also, As and F^-

Summary of Operating Conditions (Guidelines) for ARR (Cikurel, 2004)

Parameter	Units	Value
Hydraulic loading rate (HLR)	m/d	0.2 to 0.6
Wetting cycles	days	1 to 7
Drying cycles	days	2 to 7
Cleaning cycle	days	< 15 to > 30
Retention time (in ground)	months	< 1 to > 12
Depth to ground water	m	5 to 30
Travel distance	m	< 10 to > 100
Recovery	%	up to 100 %

- (Travel) Distance
- (Residence) Time
- Managing Redox
- Managing Infiltration
- ⇒ > 10 m
- \Rightarrow > 10 days
- \Rightarrow oxic and anoxic zones
- \Rightarrow wet-dry cycles

Water Quality Benefits of ARR: Removals of...

- Turbidity
- Dissolved Organic Carbon (DOC)
- Bacteria, Protozoa, and Viruses
- Organic Micropollutants (OMPs)
 - Pharmaceutically Active Compounds (PhACs)
 - Personal Care Products (PCPs)
 - Endocrine Disrupting Compounds (EDCs)
 - Pesticides
- Nitrogen (ammonia and nitrate)
- Taste and Odor
- Algal Toxins

Multi-Objective (-Contaminant) Process: ⇒ A Total Treatment System (or central feature)

ARR for Wastewater Reclamation: Potential Pre- and Post-Treatments

- 2. Secondary
- 3. Tertiary?

- 2. Oxidation (O_3, AOP)
- 3. Membrane Filtration (MF)
- 2. NF (trace organics)
- 3. GAC (trace organics)
- Post disinfection (Chlorination or UV)

- Potential Hybridizations
- Multi-Barrier Approach
- ARR: Central Feature of Process Train

DOC and Biomass Profiles

Biomass (Phospholipid) Profile ⇒ DOC Removal Profile ⇒ Sustainable Biodegradation

Nitrogen Removals at ARR Site (II-Effluent, Arizona USA)

Ammonia

Nitrate and Nitrite

OMP Elimination by ARR Under Varying Redox Conditions (adapted from Jekel)

Compound	Anoxic		Oxic (aerobic)		
	Removal	Percentage	Removal	Percentage	
FAA	high	>60 %	high	>60 %	
AAA	high	>60 %	high	>60 %	
Phenazone	moderate	30 – 60 %	high	>60 %	
Carbamazapine	high	>60 %	moderate	30 – 60 %	
Propyphenazone	moderate	30 – 60 %	moderate	30 – 60 %	
DP	low	< 30 %	low	< 30 %	
EDTA	low	< 30 %	low	< 30 %	
AOX	low	< 30 %	moderate	30 – 60 %	
AOI	moderate	30 – 60 %	low	< 30 %	
AOBr	high	>60 %	low	< 30 %	
Diclofenac	high	>60 %	n/a	n/a	
Clofibric Acid	low	< 30 %	n/a	n/a	
TCIPP	high	>60 %	n/a	n/a	
TCEP	high	>60 %	n/a	n/a	

OMP Elimination by ARR Under Varying Redox Conditions (adapted from Jekel)

Compound	Anoxic		Oxic (aerobic)		
	Removal	Percentage	Removal	Percentage	
FAA	high	>60 %	high	>60 %	
AAA	high	>60 %	high	>60 %	
Phenazone	moderate	30 – 60 %	high	>60 %	
Carbamazapine	high	>60 %	moderate	30 – 60 %	
Propyphenazone	moderate	30 – 60 %	moderate	30 – 60 %	
DP	low	< 30 %	low	< 30 %	
EDTA	low	< 30 %	low	< 30 %	
AOX	low	< 30 %	moderate	30 – 60 %	
AOI	moderate	30 – 60 %	low	< 30 %	
AOBr	high	>60 %	low	< 30 %	
Diclofenac	high	>60 %	n/a	n/a	
Clofibric Acid	low	< 30 %	n/a	n/a	
TCIPP	high	>60 %	n/a	n/a	
TCEP	high	>60 %	n/a	n/a	

OMP Elimination by ARR Under Varying Redox Conditions (adapted from Jekel)

Compound	Anoxic		Oxic (a	Oxic (aerobic)		
	Removal	Percentage	Removal	Percentage		
FAA	high	>60 %	high	>60 %		
ААА	high	>60 %	high	>60 %		
Phenazone	moderate	30 – 60 %	high	>60 %		
Carbamazapine	high	>60 %	moderate	30 - 60 %		
Propyphenazone	moderate	30 – 60 %	moderate	30 – 60 %		
DP	low	< 30 %	low	< 30 %		
EDTA	low	< 30 %	low	< 30 %		
AOX	low	< 30 %	moderate	30 - 60 %		
AOI	moderate	30 – 60 %	low	< 30 %		
AOBr	high	>60 %	low	< 30 %		
Diclofenac	high	>60 %	n/a	n/a		
Clofibric Acid	low	< 30 %	n/a	n/a		
TCIPP	high	>60 %	n/a	n/a		
TCEP	high	>60 %	n/a	n/a		

Removals of Micropollutants and Electron Acceptors under Varying Redox Conditions

(Stuyfzand, 2011)

	Removal (%)								
Redox	0		20		40	60	80		100
					NO ₃ -				NH_4^+
Oxic	Chloroform Benzene, I			Mecopro	р				
		Atrazine,	Diurone						
	Sulfa	amethoxa	zole						

کاوست KAUST

Other Recharge Options (besides infiltration/recharge basin)

- Injection Well
 - If confining layer (no vadose zone attributes)
 - Possibly, a vadose zone (gravel pack) well
- Sink Hole (Italy)
- Dune Infiltration (Belgium)
- (Intermittent) River Bed Infiltration (Spain)
 - Wadis in KSA and GCC Region \checkmark

داوست (Potential) Wadi Aquifer System ARR KAUST

From Missimer et al., 2012. Restoration of Wadi Aquifers by Artificial Recharge with Treated Wastewater: Ground Water (in press)

Engineered Wadi Aquifer ARR

From Missimer et al., 2012. Restoration of Wadi Aquifers by Artificial Recharge with Treated Wastewater: Ground Water (in press)

Engineered Wadi Aquifer ARR - cont 🐨 КАՍST

Engineering issues -distance from source to site -evaporation rate vs. surface infiltration -aquifer heterogeneity

From Missimer et al., 2012. Restoration of Wadi Aquifers by Artificial Recharge with Treated Wastewater: Ground Water (in press)

Role of ARR in Urban Storm Water Runoff Exploitation

- Non-Point (Diffuse) Source
 - Impacts of Vehicle Traffic, Urban Irrigation, Land Use
 - Surface Sources: Streets, Parking Lots, Roofs
- Contaminants
 - Trace Metals, Nutrients (P & N),
 Oil and Trace Organics, Pesticides, Road Salts
 - Improved Quality After First Flush
- Exploitation as Impaired Quality Source
 - Aquifer Recharge and Recovery ⇒ Infiltration Basins
 - Permeable Treatment Beds/Basin Amendment Layer
 - Pervious Pavements vs. Infiltration Basin
 - ARR as a Form of Storm Water Harvesting
 - Potential Constraint: Combined Sewers ⇒ CSOs

ARR Hybrids for Wastewater Reclamation/Reuse

• ARR \rightarrow Nanofiltration (NF)

- Double Barrier for OMPs (NF)
- OMP Biodegradation plus Membrane Rejection (NF)
- Membrane Fouling Reduction by ARR (Synergistic)
- Also, Effective DOC Removal (NF)

• Oxidation (Disinfection) \rightarrow ARR

- Double Barrier for OMPs (and Microbes)
- OMP Oxidation plus Biodegradation
- ARR Biodegradation of Oxidation By-Products (Metabolites)

• ARR \rightarrow Granular Activated Carbon (GAC)

- Double Barrier for OMPs
- ARR Reduction of NOM Loading onto GAC

ARR – NF Membrane Hybrid

The Water Industry Standard for to Indirect Potable Reuse

Removal of Organic Micropollutants : ARR (Biodegradation) and/or Membrane Rejection

Oxidation – ARR Hybrid

Hybrid Process: Oxidation Pre-Treatment for Enhanced Biodegradation of OMPs

کاوست KAUST

Removal of Organic Micropollutants:

ARR (Biodegradation) and/or (Advanced) Oxidation

Why not AOP alone? => Metabolites (by-products)

ARR – GAC Hybrid

Innovative System for Removal of Micropollutants – RBF and GAC

Removal (%) by GAC (Oulton et al., 2010)

کاوست

What About Microbial Removals?

Efficacy of ARR vs. Other Processes

ARR: Equivalent to Other Processes if Adequate Time/Distance

Log Removals of Microorganisms during Bank Filtration (~ ARR) Field Sites (Tufenkji et al., 2002)

Parameter	Rhine River at Remmerden	Meuse River at Zwijndrecht	Meus	se River at Roos	teren
Travel Distance (m)	30	25	13	25	150
Travel Time (days)	15	63	7	18	43
Total Coliforms	5.0	5.0	_	_	-
Fecal Streptococci	3.2	3.5	-	_	-
Enteric Viruses	4.0	4.0	3.7	-	-
Bacteriophages (Type 1)	6.2	5.7	3.9	6.0	-
Bacteriophages (Type 2)	-	-	3.8	5.1	7.8

42

کاوست KAUST

ARR in Indirect (Potable) Reuse (effective microbial and OMP removals)

Water Reclamation

Cost, Energy, GHGs, and Constraints

Cost of ARR Systems

Comparison of total annual costs for ARR and other secondary treatment technologies (Source: Nema *et al.,* 2001)

Treatment system	Indicative cost ratio (Based on total annual costs)
Soil Aquifer Treatment (I Effl)	1.00
Activated Sludge	1.65
Trickling Filter	1.70
Anaerobic Filter	1.35
Upflow Anaerobic Sludge Blanket (UASB)	1.17

But what about *transmission* costs?

- Energy (kWh/m³)
 - 0.10 kWh/m³ for Stormwater ASR (Dillon, 2010)
 - Mainly pumping costs
 (recovery; gravity feed to infiltration?)
 - But what about *transmission* costs?
- GHGs (kg CO₂-eq/m³)
 - Lower Energy Implies Lower GHG Emissions
 - No Definitive Study as of yet

ARR Constraints

- Persistence of a Few OMPs (Berlin Study: only 5 or 6 of 50 monitored OMPs) ⇒ Risk?
- Low Permeability Soils (<10⁻⁴ m/s) ⇒ Vadose Zone Wells?
- Possible Preferential Flow Patterns
 ⇒ Need for Subsurface (Geophysical) Characterization
- Fe/Mn Dissolution (anoxic conditions) ⇒ Fe/Mn Removal
- Arsenic or Fluoride Dissolution
- Calcite Dissolution/Soil Collapse (permeability \downarrow)
- Non-Sustainable Removals of Trace Metals (urban runoff)
- (More) Difficult to Control Operating Conditions
- Lack of Framework/Models for Technology Transfer ✓

