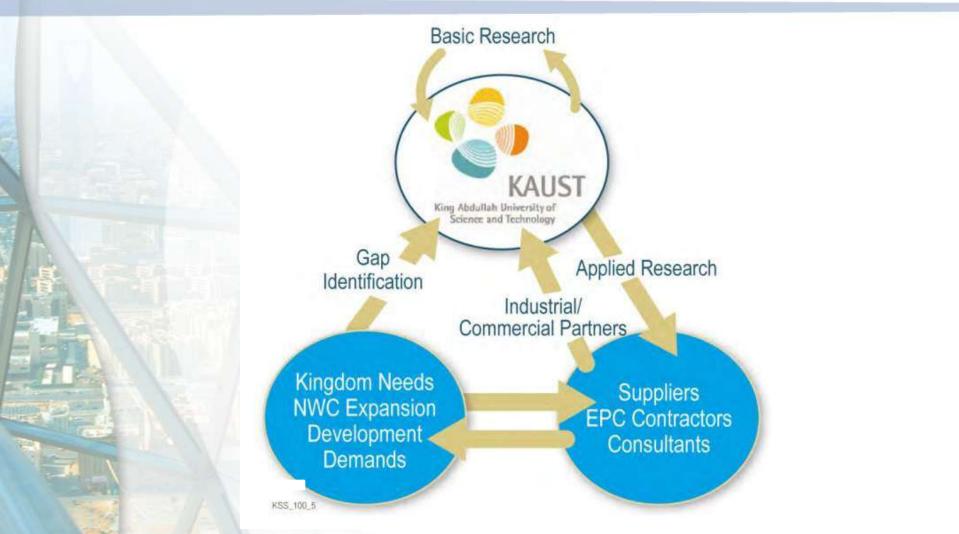
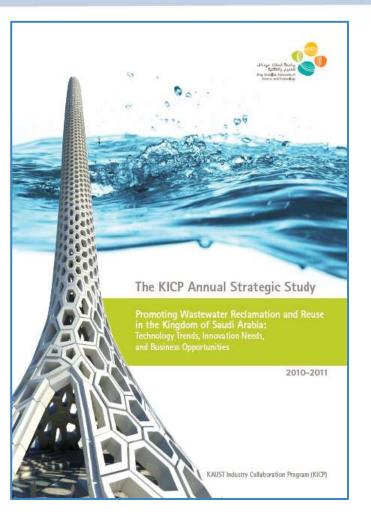


Comprehensive Study of Water Reuse Role in Integrated Resource Management – Kingdom of Saudi Arabia



6 February 2013

Presentation Outline


- Strategic Study Background
- Drivers for Water Reuse in Saudi Arabia
- Technology Review
- Public Education Needs
- Business Case
- Recommended Path forward

Strategic Study Goals

Strategic Study Goals

- King Abdullah University for Science and Technology (KAUST) recognized value in promoting beneficial use of wastewater as a resource for sustainable growth
- KAUST's Industrial Collaboration Program (KICP) members recognized value and provided funding
 - Goal prepare a Strategic Study that will serve as a resource document to
 - Identify specific uses for wastewater now and in the future
 - Identify gaps in technology, education and business opportunities related to wastewater treatment and reuse
 - Increase integration of water reclamation in KSA
 - Provide recommendations for improved implementation of reclaimed water as a resource

Baseline for Water Reuse

- Water reclamation and reuse is a critical component of integrated water resources management
- Saudi Arabia (KSA)
 - Potable water is produced from either non/slowlyrenewable water resources such as groundwater or
 - Capital- and energy-intensive seawater desalination

Reserving the use of expensive potable water for truly potable needs will extend the life of these valuable resources

Adapted with permission from WaterReuse Foundation

Drivers and Benefits of Reuse in the KSA Context

Drivers	Benefits	
Increasing population and water demands	Reduces demand on non- and slowly- renewable water supplies	
High capital cost to meet potable demands	Reduces infrastructure (and cost) needed for new potable water supplies	
High cost of energy used to produce and convey potable water	Reduces energy used for water treatment and conveyance	
Increase return on capital and energy investments in water treatment	Recoups a portion of initial high cost of purifying water for drinking	
Reduce operating costs for cooling buildings – both public and private	Less expensive for industrial, commercial, and public buildings	
Minimize discharge of pollutants to surface waters	Protects valuable aquatic resources	
Groundwater recharge is needed to prevent seawater intrusion and to replenish groundwater sources	Appropriate application to prevent saltwater intrusion and replenish groundwater resources	

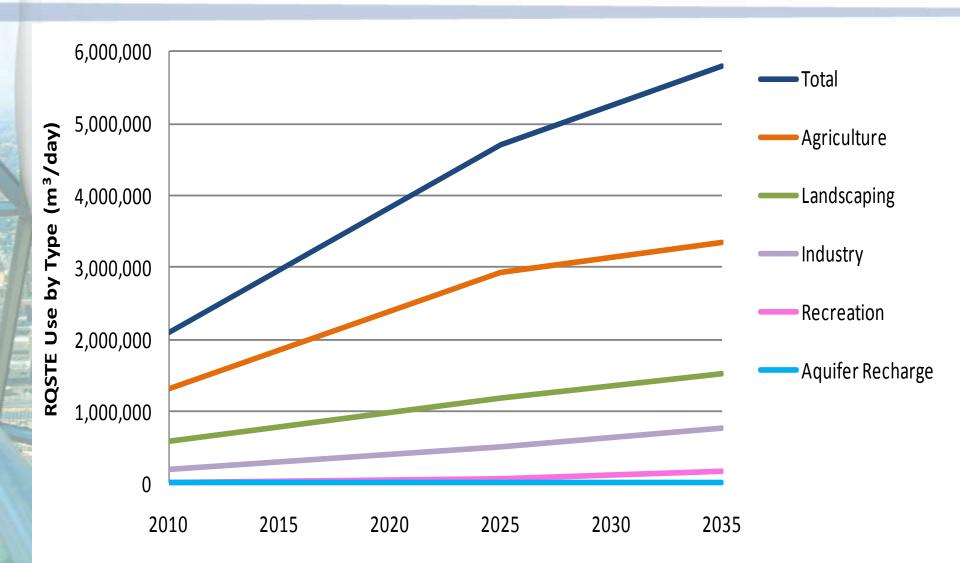
Driver: Water Supply Options are Unsustainable or Energy-Intensive

- **East Coast**: Primary source is desalinated seawater; also non-renewable groundwater resources
- Red Sea Coast: Desalinated seawater and renewable water resources
- Platform: Non-renewable groundwater resources only; desalinated water is supplied from the East Coast water province
- Northern Shield: Renewable water resources, although rainfall is much lower than in the Southern Shield
- **Southern Shield**: Renewable water resources due to significant rainfall amounts (up to 500 millimeters (mm)/year)

Driver: Water Quality in Red Sea and Arabian Gulf

- Economically important resources
 - Commercial and recreational fishing
 - Aquaculture
 - Tourism and recreation
 - Critical transportation routes
 - High volumes of shipping traffic
 Higher in Arabian Gulf due to oil and gas industry
 - Water supply sources via desalination
 - Significant coastal development occurring

Driver: Septage Disposal is a critical Wastewater Management Issue


- Septage issues in nearly all Cities
 - ~50 % of population served by central collection systems
 Independent of city size

hauled to a sewage lake by truck

If infrastructure is not in place to transport septage to a WWTP, it is:

illegally discharged without adequate treatment hauled to a WWTP by truck

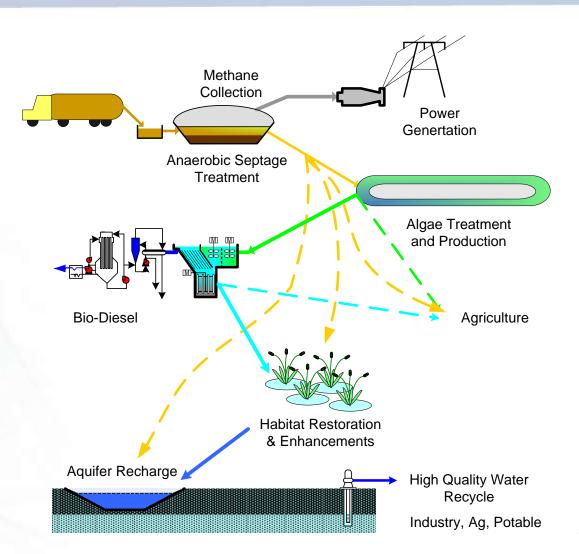
Driver: Increasing TSE Demand by Application Area

Business Driver: Energy Usage for Reuse Treatment versus Desalination

		Electrical Energy (kWh/m ³)	Thermal Energy (kWh/m ³)	Equivalent Thermal Energy (kWh/m ³)
	Reuse Technologies			
	Tertiary Treatment (gravity media filtration coupled with chlorine disinfection) ^a	0.01-0.02	0	0.04-0.08
	Reuse RO ^b	0.5-1.5	0	2-6
	Desalination Technologies			
	Brackish Water RO ^a	1	0	4
	Seawater Reverse Osmosis (SWRO) ^c	4	0	15
	Multiple Effect Distillation (MED) ^c	1	70	74
	Multi-Stage Flash (MSF) ^c	5	80	100

Promoting the Business Case: Technology Links Source with Use

Reuse Source Water

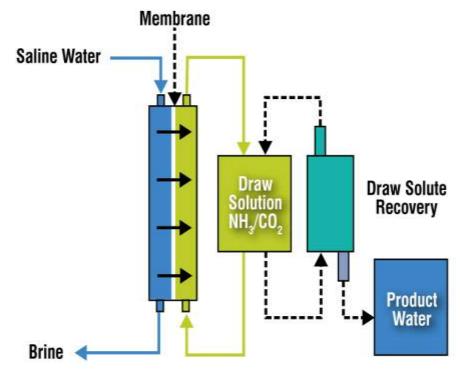

Technology

Intended Use of Reuse Water

Domestic Wastewater Industrial Wastewater Cooling Water Agricultural Drainage Industrial Agriculture Landscape Irrigation Recreational Recharge

Promoting the Business Case

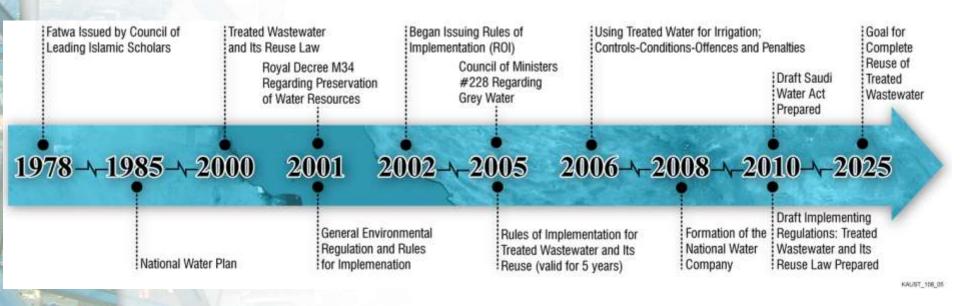
 Innovation can be Achieved by Linking Established and New Technologies



Innovative Technology Examples- Forward Osmosis

Application Area: Desalination of seawater, brackish water Objective: To lower the carbon footprint of desalination Description: Uses an osmotic pressure gradient instead of hydraulic pressure, which is used in RO, to create the driving force Potential Advantages over

Established Technologies: Operates around 1 atm


pressure Membrane compaction is not typically an issue Less fouling propensity compared to RO

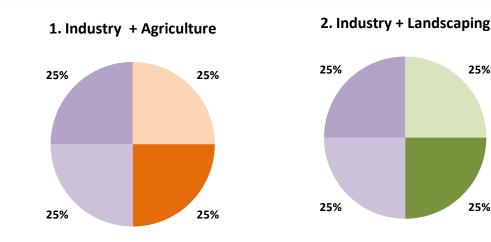
KAUST_206_02

Promoting Reuse: Public Perception

Timeline of Actions in the KSA to Promote Water Reuse

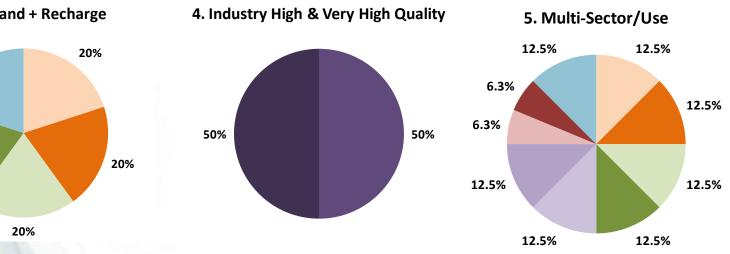
Promoting Reuse: Public Education & Outreach Programs

- Public-Private Partnerships
- Green mosques programs to recycle TSE water
- Green schools program to teach next generation how to save and reuse water to increase food and greenery.
 TV Open Debate on Dec.6, 2011

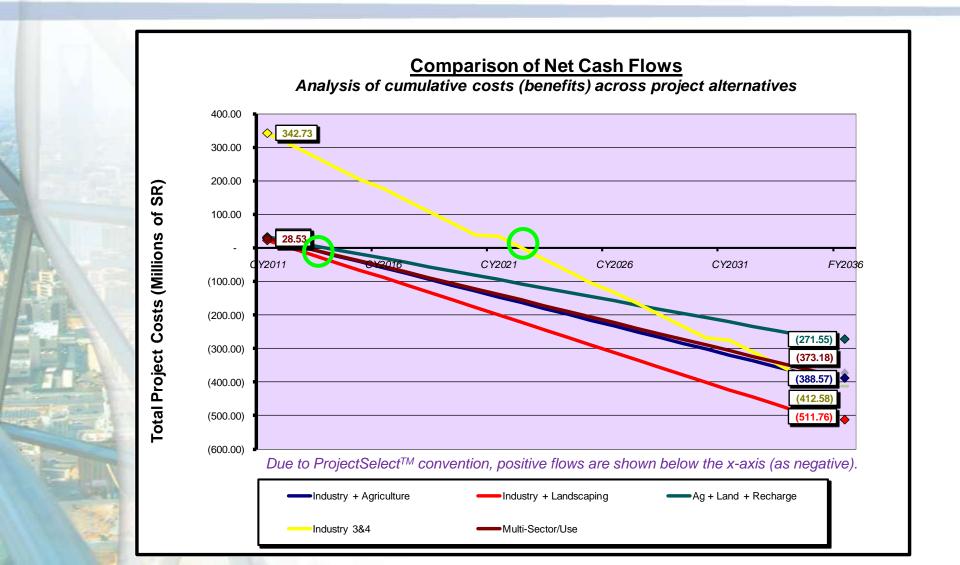

Theoretical Business cases were reviewed through adaptation ProjectSelect[™] Tool

Business Case **Scenarios**

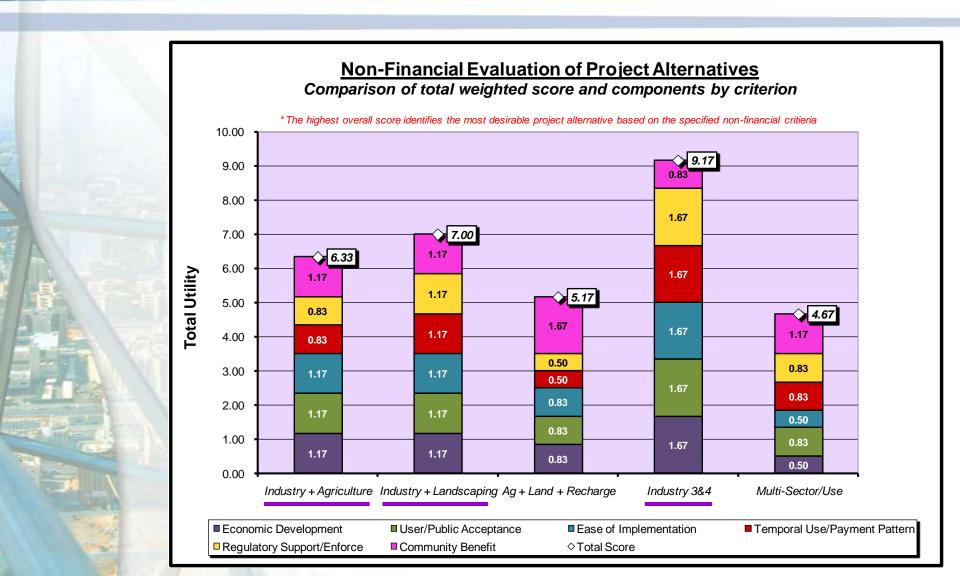
- 5 distinct scenarios reflect different allocations of TSE to the five reuse categories
- Chosen to be consistent with the types of situations that currently exist or can be fostered in KSA


20%

20%


25%

25%



Net Cash Flows Are All Positive: 4 of 5 scenarios show profit after just a few years

Scenarios With Significant Industrial Reuse Score Highest Overall, Others At Least Average

Business Case Findings

Overall Results

- All five distinct reuse portfolios are financially viable without subsidies
- Payback periods can be short if advanced treatment not needed, and are acceptable even if it is
- Reasonable tariff structure is needed to achieve this
- All portfolios deliver important non-financial benefits to the users, reclaimed water providers, and larger community

Summary Findings: Implications

- The commitment to significantly expand the availability of TSE for a wide variety of uses will be critical to meeting future water demand, can be cost-effective for users, and can be profitable for providers
- Capturing these business opportunities and supporting overall resource sustainability goals will depend in large part on
 - Instituting rational tariff structures for both first use water and TSE that support the significant capital and operational investments that will be made
 - Creating the proper economic relationship between different sources of water to make TSE sufficiently attractive as a source, and to recognize differences in ability and willingness to pay in a manner consistent with social and cultural considerations

Recommended Path Forward to Successfully Promoting Reuse in Saudi Arabia

- Instituting rational tariff structures
- Recognizing differences in the ability and willingness to pay consistent with social and cultural considerations
- Adopting regulations to support an integrated water resources planning approach.
 - Facilitating collaborative planning by getting better data
 - Increasing public awareness of the need for TSE and gaining acceptance for its use.
 - Coordinating specific actions and milestones, including strengthened regulations, to ensure that local, regional, and national goals are met

Authors and Acknowledgements

Involved Organizations

Bushnak

MSY

Schlumberger WATER SERVICES

- This Strategic Study was prepared with published and unpublished information from individuals within universities, agencies, and private companies as follows:
 - KAUST Center for Water Desalination and Reuse
 - KAUST Red Sea Research Center
 - KAUST Coastal and Marine
 - National Water Company
 - Ministry of Water and Electricity (MOWE)
 - Saudi Geological Survey
 - Presidency of Meteorology and Environment
 - The Regional Organization for the Conservation of the Environment of the Red Sea and Gulf of Aden
 - KAUST Industrial Collaboration Program (KICP).