WATER ARABIA 2013

BASIC DESIGN OF DESALINATION PROCESS

WATER ARABIA 2013 : Dr. CORRADO SOMMARIVA 4th February 2013

Water Arabia 2013

9.00 Introductions

9.15 Desalination Market

General views of the desalination market

Rising stand

Liters of Water Per Person Per Day

Enving –

Rising Worldwide Population **000 m3 per caput** –General views of the desalination market

-General views of the desalination market Increasing pressure on the environment

- Recent statistics indicates that currently
 2.3 billion people live in water stressed areas.
- 1.7 billion live in water scarce areas with less than 1,000 cubic meters per person per year.

-General views of the desalination market

Global contracted capacity

By water type

A growing market and a changing situation

WATER ARABIA 2013 : Dr. CORRADO SOMMARIVA 4th February 2013

Water Arabia 2013

-General views of the desalination market **Technology trends 1970 -2004**

-General views of the desalination market Contracted capacity in ME&A a couple of year ago

By technology

By water type

-General views of the desalination market

Proportions of the processes (seawater)

Trend by Desalination Source Water

Trend by Technology Type

Energy prices reverse desal trends

- Thermal processes are likely to continue to dominate the industry in the Gulf region over the next decade. thanks to MEGA project This is due to potential of cogeneration of power and water
- MED is gaining market share (from 15% to 21 % share of thermal market in new projects)
- Outside Gulf region, RO is dominant

* Water Desalination Report and Global Water Intelligence

Forecast desalination capacity by region – future projects (2006-2010)*

WATER ARABIA 2013 : Dr. CORRADO SOMMARIVA 4th February 2013

Desalination plant Basic Mass Balances

WATER ARABIA 2013 : Dr. CORRADO SOMMARIVA 4th February 2013

Water Arabia 2013

Desalination plant Basic Mass Balances

Regardless of the type of process adopted desalination transforms seawater into concentrated brine and distillate (or permeate) by using energy :

leaend

 $m_{sw} = m_{bd} + m_d$

2) salt conservation (overall salt balance)

1)

 $m_{sw} \omega_{sw} m_{bd} \omega_{bd} \omega_{bd} m_{d} \omega_{d}$

 ω = Salt concentration (kg/kg)

= Mass flow rate (kg / sec) m

Mass Balances relationships

Definition of concentration factor : ratio between blowdown and seawater salt concentration

 $Cf_{bd} = \frac{\omega_{bd}}{\omega_{sw}}$

Mass Balances relationships

Rearranging equation 1) and 2)

and using the definition of concentration factor we can obtain a formula relating seawater requirement and product distillate capacity

$$\mathbf{m}_{D} = \mathbf{m}_{sw} \cdot \left(1 - \frac{1}{Cf_{bd}}\right)$$

Note this formula is valid for all types of desalination processes including RO

Recovery ratio and concentration factor

$$Q_F * TDS_F = Q_C * TDS_C + Q_P * TDS_P \rightarrow Q_F = Q_C \frac{TDS_C}{TDS_F}$$

$$RR = \frac{Qc \frac{TDSc}{TDSF} - Qc}{Qc \frac{TDSc}{TDSF}}$$

$$RR = \frac{TDSc - TDS_{F}}{TDSc}$$

$$RR = \frac{TDSc - TDS_{F}}{TDSc}$$

Concentration factor – production ratio

• A glance to other technologies : Concentration factor – production ratio for RO system

$$C_F = \frac{1}{1 - RR} = \frac{1}{1 - 0.45} = 1.82$$

Concentration factor Comparison of concentration factor CF (seawater) for different processes

	MSF	MED	VC	RO
Recovery (Y%)	30 - 5	40 - 50	40 - 50	35 - 45
$CF \# \frac{1}{1-Y}$	1,4 – 2	1,6 – 2	1,6 - 2	1,5 - 1,8

Mass Balances relationships

But Then why seawater consumption for SWRO technology is much lower than for thermal ?

Mass Balances relationships

Distinguish between overall SW flow rate to thermal plant and make up flow rate

Seawater requirement

Quantity of seawater needed to produce 1 m³ product water by different processes

8-10	58		
	J-0	2.3-5	0
2.7-3	2.7-3	2.7-3	2.3-2.9
0	0	0	0.15-0.3
1.7-2	1.7-2	1.7-2	1.3-1.9
5-7.3	2.3-5	0.5-2	0
8-10	5-8	5-8	2.5-3.2
	2.7-3 0 1.7-2 5-7.3 8-10	2.7-3 2.7-3 0 0 1.7-2 1.7-2 5-7.3 2.3-5 8-10 5-8	2.7-3 $2.7-3$ $2.7-3$ 0 0 0 $1.7-2$ $1.7-2$ $5-7.3$ $2.3-5$ $8-10$ $5-8$ $5-8$

Mass Balances relationships

- Concentration factor production ratio : theoretically it would be best to concentrate as much as possible
- However it is not possible to concentrate seawater
 blowdown above a certain limit.
- The following constraints occur :
- scale precipitation in tube bundle are more frequent the more salt is concentrated

Concentration factor – production ratio

- Experience with all systems indicated need for scale control
- Hot brines easily reached saturation with inorganic species (Mg(OH)₂, CaCO₃, CaSO₄, etc.)
- Scale restricted flow paths, reduced heat transfer, caused outages

Concentration factor – production ratio

- A glance to ro technologies : Concentration factor
 production ratio for RO system
- Typically the recovery rate for a SWRO is 38% to 45%

$$RR = 100\% \cdot \frac{m_p}{m_{SW}} = 100\% \frac{m_p}{\left(\begin{array}{c} \bullet & \bullet \\ m_p + m_{conc} \end{array}\right)}$$

Concentration factor – production ratio

 A glance to other technologies : Concentration factor – production ratio for RO system

$$RR = \frac{TDS_{con} - TDS_{sw}}{TDS_{con} - TDS_{perm}}$$

$$C_F = \frac{1}{1 - RR} = \frac{1}{1 - 0.45} = 1.82$$

Working example: classroom exercise

- Data available:
 Sea Water TDS = 45400 mg/l
- Desired distillate flow = 1200 tons/hr
- Brine blowdown
- max admissible TDS = 58000 mg/l
- Calculate :
- brine blowdown flow rate
- seawater <u>make up</u> requirement

Working example

Step 1: Calculate blowdown concentration factor:

$$Cf_{bd} = \frac{58000}{45400} \cdot \frac{mg}{l} \cdot \frac{l}{mg} = 1.277$$

Step 2 calculate seawater make flow rate:

$$1200 \cdot \frac{tons}{hr} = X \cdot \left(1 - \frac{1}{1.277}\right) = X \cdot 0.217$$

Working example Seawater <u>make up</u> flow rate:

$$X \cdot = \frac{1200}{0.217} \cdot \frac{tons}{hr} = 5530 \cdot \frac{tons}{hr}$$

Calculate blow down as the difference between <u>make up</u> and distillate

$$\mathbf{m}_{bd} = \mathbf{m}_{sw} - \mathbf{m}_{d} = (5530 - 1200) \cdot \frac{tons}{hr} = 4330 \cdot \frac{tons}{hr}$$

WATER ARABIA 2013 : Dr. CORRADO SOMMARIVA 4th February 2013

Energy input classifications

Energy input classifications

Evaporative processes

Evaporative processes use thermal energy to produce distilled pure water from sea or brackish water.

Energy input classifications

- Evaporative processes rely on a phase change from liquid (in this case brine) to the vapour phase.
- In this process only the water molecules pass to the vapour phase leaving the other constituents behind in the liquid.
- The two dominating systems that have evolved are Multi Stage Flash (MSF) and Multiple Effect Distillation(MED).

Energy input classifications Membrane processes

In Membrane processes electric energy is used to pump seawater (or brackish water) through a series of semi permeable membranes to obtain a low salinity permeate as a product.

Energy input classifications

Membrane processes do not rely on a phase change but on the size and transport mobility of water molecules through a permeable membrane.

For the separation of fresh water from seawater or brackish water this process is known as Reverse Osmosis (RO).

Energy input : Desalination processes

Technologies and differences: some rule of thumb

- Cost effect : **SWRO CAPEX and OPEX** are greatly affected by :
 - seawater TDS
 - Potable water quality
- Cost effect : **Thermal CAPEX and OPEX** are only partially affected by :
 - seawater TDS
 - And practically not affected by potable water quality up to TDS of 25 ppm

Technologies and differences: some rule of thumb

WATER ARABIA 2013 : Dr. CORRADO SOMMARIVA 4th February 2013

Water Arabia 2013

Technologies and differences: some rule of thumb

Energy consumption of status of art desalination projects

The main problem is that specific energy consumption for SWRO is directly proportional to the seawater salinity

Feed salinity, ppm TDS

Effect of feed salinity on osmotic pressure and required feed pressure in RO unit

Technologies and differences: some rule of thumb

Energy consumption of status of art desalination projects

The main problem is that specific energy consumption for SWRO is directly proportional to the seawater salinity, therefore it is not a suitable solution with high salinity seawaters

Page 4

Desalination technologies energy consumption thermal and electric power

	Specific	Specific heat	Steam Extraction	Thermal	Equivalent	Total Energy
	power	consumption	pressure	energy	powerloss	requirements
	Kwh/m ³	kJ/kg	Bar abs	Thermal kwh/m ³	Electric kwh/m ³	kwh/m ³
SWRO(Med iterranean Sea)	3.5	0	N.A.	0	0	3.5
SWRO (Gulf)	4.5	0	N.A.	0	0	4.5
MSF	4.5	287	2.5-2.2	78	10-20	14-25
MED-TVC	1.0-1.5	287	2.5-2.2	78	10-20	11-21.5
MED	1.0-1.5	250	0.35-0.5	69	3	4-4.5

Energy consumption of status of art desalination projects

Desalination plants are very energy intensive processes !!!

For the diasation the steam extraction conditions are extremely important for the energy associated to the steam value.... The lower the pressure and temperature the better for efficiency se

The problems with renewable energy

 $\Delta H = K_t \cdot A \cdot \Delta T_{ml}$

 $\begin{array}{l} \Delta H = energy \ exchanged \\ kJ/sec \\ K_t = overall \ heat \ transfer \ coefficient \\ kJ/m^{2^\circ} \ C \\ A = \ overall \ heat \ transfer \ area \\ m^2 \\ \Delta T_{ml} = Delta \ Temperature \ (media \ logarithmic) \ between \ the \ streams \ ^\circ \ C \end{array}$

WATER ARABIA 2013 : Dr. CORRADO SOMMARIVA 4th February 2013

Membrane Distillation (MD) is a separation technique which joints a Clean technologies with renewable energy thermally driven distillation process with a membrane process.

MEMBRANE

• porous

- no capillary condensation takes place inside the pores
- only vapor pass through the membrane
- the membrane must not alter vapor equilibrium

DISTILLATE

• not be wetted by process liquid

The membrane should be:

• hydrophobic material (PP – PTFE)

• The driving force is a vapor pressure difference

Membrane pore supports the vapor-liquid interface

The thermal energy is u se changing water Cleans technologies with renewable energy ter Arabia 2013

Membrane Distillation (MD) GNEST

Water Clearn's technologies with renewable energy ter Arabia 2013

wrembrane Distillation (MID)

Solar Desalination coupled with Membrane distillation

- The operating temperature of the MD process is in a range ($60 \div 80$ °C) where thermal flat plate collectors have a sufficient efficiency
- Various solar pilot MD plants have been designed and proposed.

	Aqaba, Red Sea, Jordan	Gran Canary, Spain	
Design capacity [l/day]	700 -900	1000-1500	
Collector area [m ²]	72	90	
PV area [kWp]		1.92	

Low temperature Distillation (ENGNERS) Pilot plant in El Gouna

water Clearn's terchnologies with renewable energy ter Arabia 2013

WS LTD Flow Sheet

>

CONSULTING ENGINEERS

water Clean's technologies with renewable energy ter Arabia 2013

CONSULTING ENGINEERS

WSTCleantechnologies With renewable energy ter Arabia 2013

CONSULTING ENGINEERS

water Clean's technologies with renewable energy er Arabia 2013 ws LTD Process

CONSULTING ENGINEERS

A small plant in Almeria totally solar

Technologies and differences: some rule of thumb

otable water qual

	MSF	MED	RO 1 st pass	RO 2 nd pass	RO 2 nd pass + polishing
TDS [ppm]	5-30	5-50	100-500 (*)	25-100	< 20 ppm
Possibility of High purity extractions	Yes	Yes	n.a	n.a	n.a
By products	No	No	boron		
-		4	-	65	

WATER ARABIA 2013 : Dr. CORRADO SOMMARIVA 4th February 2013

Overview of Desalination Driven Technologies

Technologies and differences : some rule of thumb

- Cost effect : SWRO CAPEX and OPEX are greatly affected by :
 - seawater TDS
 - Potable water quality
- Cost effect : Thermal CAPEX and OPEX are only partially affected by :
 - seawater TDS
 - And practically not affected by potable water quality up to TDS of 25 ppm

Overview of thermally driven technologies

Multi stage flash Dominant technology world-wide

WATER ARABIA 2013 : Dr. CORRADO SOMMARIVA 4th February 2013

Water Arabia 2013

Overview of thermally driven technologies Multi stage flash Cross Tube and Long Tube MSF Distillers

Overview of thermally driven technologies Multi stage flash

Cross Tube

Overview of thermally driven technologies Multi stage flash

Overview of thermally driven technologies

Multiple effect desalination Evolved from small installation

WATER ARABIA 2013 : Dr. CORRADO SOMMARIVA 4th February 2013

Water Arabia 2013

Overview of thermally driven technologies Multiple effect desalination With Thermo compression

Condensing

Overview of desalination technologies Reverse osmosis Dominant technology when power plant is not associated to desalination

Condensing

WATER ARABIA 2013 : Dr. CORRADO SOMMARIVA 4th February 2013

Energy effect

In fact as it can be seen from the enclosed energy flow diagram the great part of the heat input to the MSF system is returned back to the sea with the seawater drain stream.

WATER ARABIA 2013 : Dr. CORRADO SOMMARIVA 4th February 2013

Water Arabia 2013

Association with power plant

Overview of desalination technologies

Power thermal desalination combinations

83

Overview of desalination technologies

Power and SWRO plant combinations

WATER ARABIA 2013 : Dr. CORRADO SOMMARIVA 4th February 2013

Water Arabia 2013

Overview of desalination technologies The Energy Situation

- Overview of desalination technologies
- Studies have been carried out showing that potable water with TDS lower than 500 mg/l could be obtained with less than 2.5 kwh/m3
- Minimum bottom threshold for power requirements for SWRO is 1.2-1.5 kwh/m3

Overview of desalination technologies The Energy Situation

Water and Power

- Water and Power are essential simultaneously
- The variation of energy consumption (kWh/m3) is function of the site (rural or urban), of seasons (summer or winter). In the GCC, the electrical consumption in the winter represents only 30 - 40 % / summer
- Moreover, water needs are higher than electricity needs: in the GCC the growth rate of water consumption is 11 % per year and energy is only 4 % (*)

(*) Koussai Quteishat, Hydrorop 2001, Marseille

Seasonal variation of water and electricity needs in ABU DHABI

Feb

Jan

Mar

Water Arabia 2013

Jun

May

July

Oct

Sep

Advantages of thermal process in ME

- Suitability in Dual process (power/water) plants
- Gulf water has high salinity. Peculiarity of seawater, polluted sites, foulants (very simple pretreatment)
- Availability of very low energy cost (waste energy). MED becomes more viable than RO
- ➢More reliable and mature (MSF)
- ➢Produces pure water TDS < 25mg/L</p>
- Large scale size units
- Integrates water and power demands

Hybrid Systems

2 + different desalination processes are coupled with the power plant

> Mainly MSF or MED with RO or VC. This combination can better utilize fuel energy as well as the power produced

➢ For utilization of idle power to produce water via RO or MVC, the extra produced water can be stored in aquifers

Advantages & potential of hybrid systems

- A common intake, reduce pumping energy
- Blending products of RO and distillation plants
- Use of single stage RO thus lowers energy needs
- RO membrane life can be extended
- Feed water temperature to RO can be integrated and optimized with distillation and power plant
- Integrated pretreatment and post treatment can reduce energy and chemical consumption

Possibility to increase the ratio water/electricity if the water consumption is preponderate

Fujairah Plant - UAE

- Seawater 40 g/l T = 22 35 ° C Started in 2002
- Separate intake for MSF and RO
- Feed water for RO not heated by MSF
- 4 gas turbines of 109 MW + 3 generators of 380 t/h 68 bar 537 $^{\circ}$ C

generates 500 MW_e net on the network + 662 MW for desalination

MSF	5x12,5 MIGD = 62,5 MIGD, 5 x 56.2	$250 \text{ m}^3/\text{j} = 281.250 \text{ m}^3/\text{j}$
RO	$15 \text{ x } 2,5 \text{ MIGD} = 37,5 \text{ MIGD}, 15 \text{ x } 11.250 \text{ m}^3/\text{j} = 168.750 \text{ m}^3/\text{j}$	
TOTAL	100,0 MIGD soit	450.000 m ³ /j

MSF: Ratio = 8 TBT (Top Brine Temperature) = 107 - 109 °C

MULTISTAGE FLASH TECHNOLOGY (MSF)

- **Process description**
- **Process** thermodynamics
- **Stage simulation model**

MSF what do we know ?

- Highly reliable operation
- Scalable up to very large sizes 18MIGD
- Readily coupled with steam turbine generating stations in "dual purpose plant" configuration
- Good water to power to power ratio

A big and well-deserved success since the 1960s

Process description: How did it begin?

- It had long been known that water could be heated above its normal boiling point in a pressurized system
- If the pressure was released, a portion of the water would boil off or "flash". The remaining liquid water would be cooled as the issuing vapor took with it its heat of vaporization
- Since evaporation occurred from the <u>bulk fluid</u> rather than at a <u>hot</u> heat exchange <u>surface</u>, opportunities for scaling would be reduced

What flashing looks like

- Hot brine from the previous stage enters through slot at lower temperature and pressure stage
- It senses the new lower pressure environment, and
- Flashes!

Flashing and boiling: the thermodynamic meaning

MSF development

- Cross tube design tube length limitations
- Long tube design
- Once through process
- Optimise structural design to reduce shell plate thickness and weight
- Solid stainless steel shell construction
- Thinner heat transfer tubes

MSF Desalination Plant

Typical stage arrangement of a large MSF plant

Stage modeling thermodynamic ideal case :

CONSULTING

Water Arabia 2013

The influence of minor constituents of seawater and brackish waters

- **A. Dissolved inorganic**
 - If seawater consisted of only H_2O and NaCI, life would be simple
 - But natural waters are often close to saturation in many inorganic compounds (CaSO₄, Mg(OH)₂, Ca(HCO₃)₂, etc.)
 - What is worse, their solubility may be <u>inverse</u> functions of temperature

This involves the following aspects to be considered:

- scaling
- venting

Stage modeling thermodynamic real case :

Multi stage flash

Cross Tube and Long Tube MSF Distillers

WATER ARABIA 2013 : Dr. CORRADO SOMMARIVA 4th February 2013

Water Arabia 2013

MSF Desalination Plant

Single stage temperature diagram

MSF Desalination Plant

Stage temperature diagram Complete plant (brine recirculation type)

MSF what process

ENGINEERS

Water Arabia 2013

Flow sheets: cross flow brine recirculation

Figure 3

Flow sheets: once through

Main flow stream mass balance

MSF cross flow plant internal layout: How it really looks like – low side flash chamber

MSF cross flow plant internal layout: how it really looks like – upper side

tube bundle tube supports roof plates and uncondensable extraction pipes

MSF cross flow plant internal layout

distillate tray, demister supports and interstage walls

corrosion in the distillate tray

Multiple Effect Desalination Technology

- process description

MED

- process thermodynamics
- stage simulation model

Evaporation Concept

MED

MSF

MED distillation

- Horizontal or vertical tube
- Falling film of seawater high heat transfer coefficients
- Mostly horizontal tube, low temperature
- 1st effect $65^{0-}67^{0}$ max temperature
- Performance ratio up to 9:1 with no TVC
- Up to 15:1 with TVC thermal vapour compression and high steam pressure
- Steam isolation needed in dual purpose plants
- Lower power consumption than MSF and RO

MED distillation

- Unit size has increased from 1 to 5 MIGD (now 8 MIGD) in 8 years
- Potential for further increase?
- Improvements in thermal vapour compressors and plant configuration
- Reduce steam supply pressure
- Trade off between steam consumption and supply pressure
- Distiller performance v power plant output

MED distillation

Typical parameters for large MED plant are:

Top Temperature of first stagePerformance RatioDistillate Output (*)

65 deg C 8 to 15 3.5-5 MIGD

Water Arabia 2013

The concept of thermo compression

• If reduced pressure causes evaporation at a lower temperature, then compression should force condensation at a higher temperature

• The combination of these phenomena can yield useful (and efficient) desalination process

The concept of thermo compression

Water Arabia 2013

Mechanical Vapor Compression (MVC) Heat exchange Vapor surface compresser Water vapor at slight under-presure Spray Seawater Water vapor at inlet. slight over-pressure Product Brine outlet outlet 124

Mechanical Vapor Compression (MVC)

• Especially in their early development the mechanical compressors were unreliable

• They were replaced by a thermally-driven no-movingparts substitute

Water Arabia 2013

A Simple Ejector-Compressor

14	1	COUPLING	ASTM A 182F-3L6L	
13	1	GASKET	GRAPHITE 92-R	
12	4	NUTS	ASTM A 194 GAZH	
11	4	STUD BOLTS	ASTM A 193 Ge.87	
10	1	FLANGE	ASTN A 105+CLADDED	
9	1	FLANGE	ASTM A 105+CLADDED	
8	1	HEAD	ASTM A 240-316L	
7	1	NOZZLE	ASTH A 312-316L	
6	1	DIVERGENT	ASTM A 240-316L	
5	1	THROAT	ASTM A 240-316L	
4	1	CONVERGENT	ASTM A 240-316L	
Э	1	CONE	ASTM A 240-316L	
5	1	SUCTION CHAMBER	ASTM A 240-316L	
1	1	NOZZLE	UNS NOB904	
Pos. Pos.	012 045	Description Descriptions	Material Materiale	Note Note

Fluid flowing in the pipeline (the "motive fluid") speeds up to pass through the restriction and in accordance with Bernoulli's equation creates vacuum in the restriction.

A side port at the restriction allows the vacuum to draw a second fluid (the "ejected") into the motive fluid through the port.

Turbulence downstream of the port entrains and mixes the ejected into the motive fluid.

Water Arabia 2013

Process description

Water Arabia 2013

Flow sheets : once through

Flow sheets : vapor compression

CONSULTING

MED process phenomena : thermodynamic path : the ideal case

MED process phenomena :

MED the importance of the wetting Spray nozzles

Large wetting ensures complete wetting of tubes. Complete wetting is a prime contributor to avoid scale buildup on heat transfer tubes.

Water Arabia 2013

The feed can be sprayed in parallel over all effects wetting rate = 100 l/m/hrThe feed can be sprayed over the first effects and then with brine recirculation over the remaining = 400 l/m/hr

MED: Wetting Rate

All heat transfer surface must contribute to the brine boiling

Scale

tube

Water Arabia 2013

Danger of tube scale bridging

MED cross flow plant internal layout

MED cross flow plant internal layout

MED arrangements

TYPICAL HTE ARRANGEMENT

TYPICAL VTE ARRANGEMENT

HL - Water Arabia 2013

FIG. 3

1143/3003/EPE/01

Desalinâtion Projects : MED layout

Water Arabia 2013

Seawater abstraction

ENGINEERS

Water Arabia 2013

Intake Design Options

Groundwater Wells

Groundwater Wells

The adoption of wells is generally restricted to those conditions where raw water demand is low (less than 2000 m3/hr).

Normally the use of well fields to supply seawater feed to RO plants offers several benefits These include a natural filtration system that removes several potentially damaging materials such as heavy oils and debris and offers a better feed water quality to the RO plant.

In general well fields offer lower construction and maintenance costs with respect to other seawater intake structures. Soil permeability is critical for the design of a beach well. Testing permeability is essential

ENGINEERS **Open Seawater Intake**

ENGINEERS **Travelling Water (Band) Screen**

courtesy USFilter

Through-Flow

WATER ARABIA 2013 : Dr. CORRADO SOMMARIVA 4th February 2013

The Intel Model Test for Circulating Water Pump

When circulating water pump is operated in the inappropriate intake sump, oscillation and noise appear which gives serious influences on the pump performances.

Therefore, the intake sump should be ensured through the model test and computer analysis in case of uncertain layout arrangement.

Water Arabia 2013

WATER ARABIA 2013 : Dr. CORRADO SOMMARIVA 4th February 2013

Тур

ation to be carried of

Water Arabia 2013

High Specific Speed (Ns) Pump Test Loop

Suction Sump Model Test

Suction Sump Model Test Loop

Hydraulic institute standards

• Dimensions are in proportional ration given seawater supply pump bellmouth and intake dimensions.

Intake Arrangements CONSULTING ENGINEERS

Hubert/viiav

SWRO technology process features

- In practise there are many hurdles
 - RO technology is extremely sensitive to :
- Sea water quality and site location
- Pollutants (oil, hydrocarbons) and bio-fouling
- Microelements in seawater (i.e Boron) which presence is totally irrelevant for thermal technologies

RO technology so far has demonstrated limited operational tolerance and deep understanding of engineering and water bio-chemistry aspects In particular the critical components leading to operational problems in the past have been the pre-treatment

The SWRO Desalination Process

1) Seawater intake	2) Pre-treatment intake	3) Desalination	4) Post-treatment	5) Fresh water
Open intake or Well intake	Rocculation Disinfection	High-pressure system	Hardnessand pH adjustment Morcbiological contrd	distribution
	Pre-filtration Addition of anti-scalant	Energy recovery system Membrane deaning		6) Effluents disposal

Hubert

Basics of RO Technology

RO technology relies on membranes permeable to water but not to dissolved salts

•Pressure is the driving force of the process. It has to be sufficiently high to overcome the osmotic pressure of the saline seawater . The higher the salts the higher the pressure which is necessary

The membrane is a barrier between two phases that permits preferential and selective crossing of one or more kind of fluid mixture from one phase to

the other.

The driving forces can be different such as :

-difference in pressure,

-difference in concentration,

-difference in chemical potential

-Others

Typically industrial RO – UF processes are *pressure driven*.

CONSULTING

Transport Model in a Pressure Membrane

Dead-end

Two types of filtration

Cross flow filtration is better for high concentration, because the tangential flux close to the membrane reduces polarization phenomenon

Water Arabia 2013

Particles that can't permeate through the membrane, tends to accumulate close to membrane surface Decrease membrane performance Reversible process

The negative aspects of polarization can be reduced using appropriate flux configuration

MEMBRANE FEATURES

Scheme of membrane separation

Parameter that characterized membrane performance

2nd feed water pH

Exercise: Flux calculation

Membrane flux: Product output

(n° membrane x membrane's surface)

Number of membrane $= n_{\underline{m}}$ membrane's surface) $= S_{\underline{m}}$

Flux calculation

MV (see fomsheet E6)	un.	20-lug	14-ott	26-ott	%
Reverse osmosis Summer					
Gross Product water Output 1st pass	m3/h		10.832	10.770	-1%
Nb of RO trains on duty		16	16,0	15,0	-6%
Nbof trains in stand by		0			
Product water Output per train of 1st pass		677	677,0	718,0	6%
1st pass membranes per train		1274	1.274	1.379	8%
1st pass membranes		TM820- 369	TM820-370	TM820-370	
Membranes' surface	m2	34,374	34,374	34,374	
Membrane flux MV	l/h/m2	15,46	15,46	15,15	-2%
Reverse osmosis Winter					
Gross Product water Output 1st pass (uncahnged)	m3/h	10.832	10.832	10.770	-1%
Nb of RO trains on duty	un.	16	15,0	14,0	-7%
Nb of RO trains on stand by		0	1,0	1,0	
Product water Output per train of 1st pass (calculated)		677	722,1	769,3	7%
1st pass membranes per train		1274	1.274	1.379	8%
1st pass membranes model		TM820- 369	TM820-370	TM820-370	
Membranes' surface	m2	34,374	34,374	34,374	
Membrane flux MV	l/h/m2	15,46	16,49	16,23	-2%
OD (see fomsheet E6)	un.	f	14-ott	26-ott	%
Reverse osmosis					
Product water Output per train of 1st pass	m3/h		486,0	486,0	0%
1st pass membranes per train			1.078	1.078	0%
1st pass membranes			SR-HR380	SR-HR380	
Membranes' surface	m2		35,300	35,300	
Membrane flux OD	l/h/m2	1	12,77	12,77	0%

WATER ARABIA 2013 : Dr. CORRADO SOMMARIVA 4th February 2013

In an industrial plant the principles of RO are implemented in the basic flow sheet as below

Main plant components are :

- Seawater intake and initial filtration
- ◆ Pre-treatment

♦ RO membranes

High pressure pumps

Conventional

Membrane (Ultra filtration micro filtration)

In practise there are many hurdles

RO technology is extremely sensitive to :

- Sea water quality and site location
- Pollutants (oil, hydrocarbons) and bio-fouling
- Microelements in seawater (i.e Boron) which presence is totally irrelevant for thermal technologies

RO technology so far has demonstrated limited operational tolerance and deep understanding of engineering and water bio-chemistry aspects

In particular the critical components leading to operational problems in the past have been the pre-treatment

Traditional feed pre-treatments:

- Mechanical treatments (media filters, cartridge filters)
- •Extensive chemical treatments for fouling, bio-fouling and scaling prevention (FeCl₃, NaHSO₄, H₂SO₄)
- Additives for prevention of corrosion and membrane preservation

WATER ARABIA 2013 : Dr. CORRADO SOMMARIVA 4th February 2013

Water Arabia 2013

Conventional pre-treatment chemicals

- Primary coagulant dosage of ferric chloride (15-21 L/1000m³ FeCl₂ 40%) for surface charge neutralization
- Chlorination (11-22 L/1000m³ Sodium Hypochlorite, 6.5%) for controlling biological growth
- Sodium bisulphite (38%, 0.18-1.8 L/1000m³) added to remove residual chlorine

MF/UF Pre-treatment

In 1995 it was estimated that less than 25 MGD installed capacity was in operation in North America; five years later that number has grown to over 400 MGD.

About seven different MF/UF manufacturers are based in the USA, Japan, France, the Netherlands and Canada. MF and UF systems in the 2 to 4 MGD capacity range are priced at about \$0.45 per gallon of capacity; MF/UF systems capable of 25 to 40 MGD are priced at about \$0.25 per gallon of capacity.

Dual media, gravity filter configuration (Courtesy of Infilco-Degremont)

Dual media, horizontal pressure filter configuration (Courtesy of Tonka Equipment Company)

Configuration of RO seawater system with membrane (UF/MF) pretreatment

N 2

Membrane module 250 m2, 100 m3/d (2700 ft2, 26,000 gpd)

Figure 62. Submersible capillary technology

capillary fiber

.4 m (4.6 ft)

CONSULTING

CONSULTING

Design concept of submersible system (Courtesy Zehofi Corporation)

Flow diagram of submersible capillary membrane plant

Configuration of pressure driven UF/MF membrane module.

HYDRAcap 40: $320 \text{ ft}^2 (30 \text{ m}^2)$ HYDRAcap 60: $500 \text{ ft}^2 (46 \text{ m}^2)$

Figure 67. Pressure driven capillary UF module

Flow diagram of pressure driven capillary membrane unit

Forward osmosis

Forward Osmosis

Water Arabia 2013

FO can dilute a solution of higher osmotic pressure using a solution of lower osmotic pressure

- FO can concentrate a solution of lower osmotic pressure using another of higher osmotic
- Thermal desalination feedwater softeningpressure

P2-P1 > $\Lambda \pi$

Desalination (MW)

Water-subStitution

.82

Bringing new

Forward Osmosis Desalination

Benefits:

- Proven low rate of fouling of FO membranes
- Proven low rate of fouling of regeneration RO membranes
- Lower fouling propensity delivers energy consumption reduction of up to 30% relative to reverse osmosis – site dependent
- Lower salt passage relative to conventional reverse osmosis
- Inherently low product boron levels, when compare to conventional reverse osmosis
- Higher availability than conventional reverse osmos plant due to low fouling and simple cleaning when required

Investment cost - RO process

Desalination cost UDATED 2005 \$US/m³)

<u>Seawater</u>

- Very large scale plants
- Large scale plants
- Small plants
- **Brackish water**
- Large scale plants
- Small plants

- 0,50 0,80 1,00 - 1,50 2,00 - 3,00
- 0,20 0,40 0,50 - 0,70

Recent prices - seawater – RO (*)

Site	Capacity m3/d	Start production	Cost \$/m3
EILAT (Israël)	20.000	1997	0,72
LARNACA (Chypre)	56.000	2001	0,83
TAMPA (Floride)	106.000	2003	0,56*
ASHKELON (Israël)	320.000	2004	0,54

(*) Mark Wilf – MEDRC – Cyprus – 6/8 December 2004

Possible alternatives for different processes

Investment cost of different processes

	Process	\$/m ³ /day
	MSF	1.200 - 2.500
Seawater	MED	1.000 - 2.000
	VC	1.000 - 1.600
	RO	800 - 2.000
Brackish water	RO	200 - 500
	ED	300 - 400

WATER ARABIA 2013 : Dr. CORRADO SOMMARIVA 4th February 2013

SUSTAINABILITY ISSUES RELATED TO DESALINATION

WATER ARABIA 2013 : Dr. CORRADO SOMMARIVA 4th February 2013

Water Arabia 2013

Energy recovery devices for SWRO applications

ENERGY RECOVERY SYSTEM -

WATER ARABIA 2013 : Dr. CORRADO SOMMARIVA 4th February 2013

Water Arabia 2013

CONSULTING

WATER ARABIA 2013 : Dr. CORRADO SOMMARIVA 4th February 2013

Major Sustainability issues related to desalination plants:

- 1)High energy footprint per unit of product water
- 2)Impact of process flow discharge: blowdown brine salinity and seawater heat rejected temperature

Energy footprint per unit of product water

energy footprint per unit of product water

1.Energy consumption of status of art desalination projects

- Studies have been carried out showing that potable water with TDS lower than 500 mg/l could be obtained with SWRO technology with less than 2.5 kwh/m^{3.}
- Minimum bottom threshold (theoretical) for power requirements for SWRO is depending on TDS ranging between 1.2-1.5 kwh/m³

Energy footprint per unit of product water 2. in terms of CO_2 related emissions Grid Emission Factor

- In parts of the world that are heavily reliant on coal the grid emission factor is somewhere near 0.8TCO₂/MWH.
- Whereas where there is lots of new and efficient system the grid it tends to be lower e.g 0.5TCO₂/MWH

Page 19

Energy footprint per unit of product water

2. in terms of CO₂ related emissions

Seawater impact Operating Efficiencies

 P_D = power dissipated in the sea D = Distillate produced η = plant efficiency H = enthalpy (v refer to steam D refer to distillate

Operating Efficiencies

At a given discharge enthalpy and production plant efficiency sharply decrease the heat dissipated to the sea

At high efficiency the difference between the heat dissipation with increasing plant size decrease

Water Arabia 2013 CONSULTING

What are the results in a comparison?

Environmental impacts in power generation and desalination processes

Reference process	Type of process	Energy dissipated in the environment MW	TDS increase with respect to the uptake
Power generation	Conventional cycle	50	0
100 MW	Combined cycle	10	0
Desalination plant	MSF (performance ratio 9)	120	15-20 %
7.2 MIGD	MED (performance ratio 9)	100	15-20 %
	SWRO	0	50-80 %

Differential temperature across thermal desalination plants are quite high

10 ° C to (extreme of) 14 ° C in summer compared to max 5 in power plants

Winter operation the ΔT is even more severe 17 ° C to (extreme of) 20 °C

Differential temperature comparison between power and desalination processes

Reference process	Type of process	Differential temperature across the process [°C]	
Power generation	Conventional cycle	3-5	
150 MW	Combined cycle	5	
Desalination plant	MSF (performance ratio 9)	Summer	Winter
7.2 MIGD		8-12	Up to 18
	MED (performance ratio 9)	10	
	SWRO	0-1	5

WATER ARABIA 2013 : Dr. CORRADO SOMMARIVA 4th February 2013

INEFFICIENCIES

Water Arabia 2013

MATCHING WATER AND POWER GENERATION ; AVOIDING

The energy situation

WATER ARABIA 2013 : Dr. CORRADO SOMMARIVA 4th February 2013

Water Arabia 2013

WATER DEMAND

What can we do to avoid this inefficiency ?

Electricity transmission grid

WATER ARABIA 2013 : Dr. CORRADO SOMMARIVA 4th February 2013

IMPROVING EFFICIENCY AT PLANNING STAGE

End of the course

- Thanks
- Dr. Corrado Sommariva

Dr. Corrado Sommariva ILF Consulting Engineers Abu Dhabi Managing Director Generation Middle East Al Ferdous Tower Salam Street 4th Fl. P.O. Box 73250 Abu Dhabi, United Arab Emirates Phone: +971 2 6716500 Fax: +971 2 6716166 Mobile: +971 50 4438997 (United Arab Emirates) Email: corrado.sommariva@ilf.com